微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

5.1 Knowledge of the specified individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range of 0.01 % mass to approximately 30 % mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedure is used for components with concentrations outside the specified ranges.1.3 The test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range of 1 % mass to 30 % mass. However, the cooperative study data provided sufficient statistical data for MTBE only.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic (for example, virgin naphthas), or both, constituents above n-octane may reflect significant errors in PONA type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this procedure is applicable to samples containing less than 25 % mass of olefins. However, some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Caution should also be exercised when analyzing olefin-free samples using this test method as some of the paraffins may be reported as olefins since analysis is based purely on retention times of the eluting components.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent volume) or other test methods, such as those based on multidimensional PONA type of instruments (Test Method D6839).1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744, or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and D5623 for sulfur compounds, or equivalent.1.6 Annex A1 of this test method compares results of the test procedure with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toluene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using specific test methods.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.5.2 This test method is adopted from earlier development and enhancement.4,5,6,7 The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).5.3 Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.5.4 If water is or is suspected of being present, its concentration is determined by the use of Test Method D1744. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D4815 and D5599 for oxygenates, Test Method D5580 for aromatics, and Test Method D5623 for sulfur compounds.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range from 0.01 % to approximately 30 % by mass. The test method may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the test method is used for components with concentrations outside the specified ranges.1.3 This test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range from 1 % to 30 % by mass. However, the cooperative study data provided insufficient statistical data for obtaining a precision statement for these compounds.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA-type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this test method is applicable to samples containing less than 25 % by mass of olefins. However, some interfering co-elution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Annex A1 of this test method compares results of the test method with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toulene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using the specific test methods listed in the reference section.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent by volume) or other test methods, such as those based on multidimentional PONA-type of instruments.1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744 or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and Test Method D5623 for sulfur compounds, or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 Field, in-place repetitive static plate load tests are used for the evaluation and design of pavement structures. Repetitive static plate load tests are performed on soils and unbound base and subbase materials to determine strain modulus or a measure of the shear strength of pavement components.1.1 This test method covers the apparatus and procedure for making repetitive static plate load tests on subgrade soils and compacted pavement components, in either the compacted condition or the natural state, and is to provide data for use in the evaluation and design of rigid and flexible-type airport and highway pavements.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Results from this test method suggest the degree of aerobic, aquatic biodegradation of a lubricant or lubricant component. The rate and extent of oxygen consumption is measured upon exposure of the test material to an inoculum within the confines of a controlled laboratory setting. Test materials which achieve a high degree of biodegradation in this test may be assumed to easily biodegrade in many aerobic aquatic environments.5.2 Because of the stringency of this test method, low results do not necessarily mean that the test material is not biodegradable under environmental conditions, but indicate that further testing is necessary to establish biodegradability.5.3 If the pH value at the end of the test is outside the range from 6 to 8 and if the percentage degradation of the test material is less than 50 %, it is advisable to repeat the test with a lower concentration of the test material or a higher concentration of the buffer solution, or both.5.4 A reference or control material known to biodegrade under the conditions of this test method is necessary in order to verify the activity of the inoculum. The test must be regarded as invalid and shall be repeated using a fresh inoculum if the reference material does not demonstrate biodegradation to the extent of >60 % of the ThO2 within 28 days.5.5 Information on the toxicity of the test material to the inoculum may be useful in the interpretation of low biodegradation results. Toxicity of the test material to the inoculum may be evaluated by testing the test material in combination with the reference material in inhibition control systems. If an inhibition control is included, the test material is assumed to be inhibiting if the degradation percentage of the reference material is lower than 40 % (ISO 8192). In this case, it is advisable to repeat the test with lower concentrations of the test material.5.6 Total oxygen utilization in the blank at the end of the test exceeding 60 mg O2/L invalidates the test.5.7 The water solubility or dispersibility of the lubricant or component may influence the results obtained and hence comparison of test results may be limited to lubricants or components with similar solubilities.5.8 The behaviors of complex mixtures are not always consistent with the individual properties of the components. Test results for individual lubricant components may be suggestive of whether a mixture containing these components (that is, fully formulated lubricants) is biodegradable, but such information should be used judiciously.1.1 This test method covers a procedure for determining the degree of biodegradability of lubricants or their components in an aerobic aqueous medium on exposure to an inoculum under controlled laboratory conditions. This test method is an ultimate biodegradation test that measures oxygen demand in a closed respirometer.1.2 This test method is suitable for evaluating the biodegradation of volatile as well as nonvolatile lubricants or lubricant components.1.3 This test method is applicable to lubricants and lubricant components which are not toxic and not inhibitory to the test microorganisms at the test concentration.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 10.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
185 条记录,每页 15 条,当前第 2 / 13 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页