微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1. Scope 1.1 This Standard specifies the methods to be used for measuring the energy consumption and drum volume, and for te sting the performance characteristics, of automatic household electric tumble-type clothes dryers. 1.2 This Standard descri

定价: 455元 / 折扣价: 387

在线阅读 收 藏

Update #1 was published as notification that this is now a National Standard of Canada This PDF includes Update #1 Preface This is the fourth edition of CSA C373, Energy consumption test methods and limits for household dishwashers. It supersedes

定价: 637元 / 折扣价: 542

在线阅读 收 藏

1. Scope 1.1 This Standard applies to microwave ovens capable of generating less than 5 kW of microwave power and manufactured for use in homes and similar locations. 1.2 This Standard specifies methods of testing the energy consumption of electri

定价: 455元 / 折扣价: 387

在线阅读 收 藏

Update No. 1 was published as notification that this is now a National Standard of Canada This PDF includes Updates #1 and #2 1 Scope 1.1 This Standard describes the test procedures required to perform a 24 h simulated use test. This Standard al

定价: 1365元 / 折扣价: 1161

在线阅读 收 藏

4.1 The oxygen consumption principle, used for the measurements described here, is based on the observation that, generally, the net heat of combustion is directly related to the amount of oxygen required for combustion (1).7 Approximately 13.1 MJ of heat are released per 1 kg of oxygen consumed. Test specimens in the test are burned in ambient air conditions, while being subjected to a prescribed external heating source.4.1.1 This technique is not appropriate for use on its own when the combustible fuel is an oxidizer or an explosive agent, which release oxygen. Further analysis is required in such cases (see Appendix X2).4.2 The heat release is determined by the measurement of the oxygen consumption, as determined by the oxygen concentration and the flow rate in the combustion product stream, in a full scale environment.4.3 The primary measurements are oxygen concentration and exhaust gas flow rate. Additional measurements include the specimen ignitability, the smoke obscuration generated, the specimen mass loss rate, the effective heat of combustion and the yields of combustion products from the test specimen.4.4 The oxygen consumption technique is used in different types of test methods. Intermediate scale (Test Method E1623, UL 1975) and full scale (Test Method D5424, Test Method D5537, Test Method E1537, Test Method E1590, Test Method E1822, ISO 9705, NFPA 265, NFPA 266, NFPA 267, NFPA 286, UL 1685) test methods, as well as unstandardized room scale experiments following Guide E603, using this technique involve a large instrumented exhaust hood, where oxygen concentration is measured, either standing alone or positioned outside a doorway. A large test specimen is placed either under the hood or inside the room. This practice is intended to address issues associated with equipment requiring a large instrumented hood and not stand-alone test apparatuses with small test specimens.4.4.1 Small scale test methods using this technique, such as Test Methods D6113, E1354, E1474 and E1740, as well as ISO 5660 internationally, are based on a stand-alone apparatus, wherein a small specimen is tested within the equipment. A small-scale test using oxygen consumption calorimetry with a larger test specimen (than the above referenced test methods) and intended for low levels of heat release is Test Method E2965.4.4.2 Another small scale heat release test method, Test Method E906/E906M, does not use the oxygen consumption technique.4.4.3 Annex A1 contains the considerations needed for heat release measurements and Annex A2 contains the corresponding measurement equations as well as the equations for smoke and gas release measurements. These equations apply to Test Methods D5424, D5537, E1537, E1590, E1623, and E1822. See also Section 14.4.5 Throughout this practice, test equipment is referenced to provide helpful guidance to test facilities. Substitution of equivalent, or better, test measuring devices is permissible.1.1 This practice deals with methods to construct, calibrate, and use full scale oxygen consumption calorimeters to help minimize testing result discrepancies between laboratories.1.2 The methodology described herein is used in a number of ASTM test methods, in a variety of unstandardized test methods, and for research purposes. This practice will facilitate coordination of generic requirements, which are not specific to the item under test.1.3 The principal fire-test-response characteristics obtained from the test methods using this technique are those associated with heat release from the specimens tested, as a function of time. Other fire-test-response characteristics also are determined.1.4 This practice is intended to apply to the conduction of different types of tests, including both some in which the objective is to assess the comparative fire performance of products releasing low amounts of heat or smoke and some in which the objective is to assess whether flashover will occur.1.5 This practice does not provide pass/fail criteria that can be used as a regulatory tool, nor does it describe a test method for any material or product.1.6 For use of the SI system of units in referee decisions, see IEEE/ASTM SI-10. The units given in parentheses are provided for information only.1.7 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.NOTE 1: This is the standard caveat described in section F2.2.2.1 of the Form and Style for ASTM Standards manual for fire-test-response standards. In actual fact, this practice does not provide quantitative measures.1.8 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. Fire testing involves hazardous materials, operations, and equipment. See also Section 7.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

Biobased materials are considered a means to reduce the consumption of nonrenewable resources and reduce the environmental impact associated with the creation of materials and products, such as increased CO2 emissions and so forth. The U.S. Government has expressed the desire to use its buying power to promote usage of biobased materials, as evidenced in Presidential Orders 13101 and 13123 and the recently passed Farm Security and Rural Investment Act of 2002 (P.O. 107 - 171.).This guide provides a vendor with a standardized process to develop and compile information on the total resources consumed in creation of a product, define what fraction of the resources are biobased, and transmit the information in a clear and logical way. Carbon is the foundation of both biobased and fossil (nonrenewable) resources. Carbon also represents a large fraction of the environmental profile considerations of a product. Therefore carbon is used in this guide to combine and track energy and raw materials resources consumption involved in creation of a product.This guide provides a way to determine and report weight fraction of biobased material in a product, or its biobased content, W(b).This guide also provides for verification and validation of the information supplied by vendors to support their product claims.This guide provides a way to determine the biobased and nonrenewable (fossil) resource consumption, both as raw materials and as energy, involved in creation of a product and to combine the biobased and nonrenewable resources into total resource consumption on a consistent basis.A companion standard5 provides a test method for authentication of the origin of carbon claimed to be derived from renewable resources.1.1 This guide covers a process to determine (1) biobased content of materials and products, (2) total resource consumption, both biobased and nonrenewable, in the form of raw materials and energy, and (3) an environmental profile, which would also include emissions and waste generated.1.2 Reference to the use of factors to convert materials and energy to carbon equivalents are provided (1-6). In addition, the use of ISO standards to determine the material and energy inventories and an environmental profile of the products and materials is discussed. It is outside the scope of this guide to provide a detailed description of the use and application of life cycle assessment tools and conversion factors for the determination of a biobased material's environmental profile. Future ASTM International standards are being prepared to cover these subjects.1.3 In the application of this guide, the protection of business confidential information is an important consideration. In general, the level of detail required to evaluate material and energy inputs and outputs can be reported without revealing proprietary unit process information. Unit processes can be treated as black boxes with inputs and outputs. If business confidentiality is still a concern, unit processes can be further combined or the final LCA (Life Cycle Assessment) results can be reviewed and certified by an external, independent expert with which the vendor will have the appropriate secrecy agreement.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
21 条记录,每页 15 条,当前第 2 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页