微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers standard specification for several grades of minimum-wall-thickness, seamless and welded, carbon and alloy-steel tubes intended for use at low temperatures. The steel shall conform to the required chemical composition for carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, copper, cobalt, and molybdenum. The number of tubes in a heat-treatment lot shall be determined from the size of the tubes. The tubes shall have a hardness number that does not exceed the prescribed Rockwell and Brinell hardness values. Several grades of steel shall conform to the following tensile properties: tensile strength, yield strength, and elongation. For Grades 1, 3, 6, 7, and 9, the notch-bar impact properties of each set of three impact specimens, including specimens for the welded joint in welded pipe, shall not be less than the prescribed values. Several mechanical tests shall be conducted, namely: flattening test; flare test (seamless tubes); flange test (welded tubes); reverse flattening test; hardness test; and impact tests. Hydrostatic or nondestructive electric test shall also be performed. Materials shall be tested for impact resistance at the prescribed temperature for the respective grades. Impact temperature reduction values shall be by any amount equal to the difference between the temperature reduction corresponding to the actual material thickness and the temperature reduction corresponding to Charpy specimen width actually tested.1.1 This specification2 covers several grades of minimum-wall-thickness, seamless and welded, carbon and alloy-steel tubes intended for use at low temperatures. Some product sizes may not be available under this specification because heavier wall thicknesses have an adverse affect on low-temperature impact properties.1.2 Supplementary Requirement S1 of an optional nature is provided. This shall apply only when specified by the purchaser.NOTE 1: For tubing smaller than 1/2  in. [12.7 mm] in outside diameter, the elongation values given for strip specimens in Table 1 shall apply. Mechanical property requirements do not apply to tubing smaller than 1/8  in. [3.2 mm] in outside diameter and with a wall thickness under 0.015 in. [0.4 mm].1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers seamless ferritic alloy-steel pipe for high-temperature service. The pipe shall be suitable for bending, flanging (vanstoning), and similar forming operations, and for fusion welding. Grade P2 and P12 steel pipes shall be made by coarse-grain melting practice. The steel material shall conform to chemical composition, tensile property, and hardness requirements. Each length of pipe shall be subjected to the hydrostatic test. Also, each pipe shall be examined by a non-destructive examination method in accordance to the required practices. The range of pipe sizes that may be examined by each method shall be subjected to the limitations in the scope of the respective practices. The different mechanical test requirements for pipes, namely, transverse or longitudinal tension test, flattening test, and hardness or bend test are presented.1.1 This specification2 covers nominal wall and minimum wall seamless ferritic alloy-steel pipe intended for high-temperature service. Pipe ordered to this specification shall be suitable for bending, flanging (vanstoning), and similar forming operations, and for fusion welding. Selection will depend upon design, service conditions, mechanical properties, and high-temperature characteristics.1.2 Several grades of ferritic steels (see Note 1) are covered. Their compositions are given in Table 1.NOTE 1: Ferritic steels in this specification are defined as low- and intermediate-alloy steels containing up to and including 10 % chromium.1.3 Supplementary requirements (S1 to S9) of an optional nature are provided. Supplementary requirements S1 through S6 call for additional tests to be made, and when desired, shall be so stated in the order together with the number of such tests required as applicable.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.NOTE 2: The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as “nominal diameter,” “size,” and “nominal size.”1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers carbon steel pipe made by the centrifugal casting process intended for use in high-temperature, high-pressure service. This pipe shall be suitable for fusion welding, bending, and other forming operations. Grades for carbon steels shall conform to the required chemical composition for carbon, manganese, phosphorous, sulfur, and silicon. Manufacturing of the material shall be done by machining and heat treatment. Pyrometers shall be used to control the furnace temperatures. Tensile properties shall conform to the required values for tensile strength, elongation, and reduction of area. Mechanical properties shall conform to the following: transverse or longitudinal tension test; flattening test; and hydrostatic test.1.1 This specification2 covers carbon steel pipe made by the centrifugal casting process intended for use in high-temperature, high-pressure service. Pipe ordered under this specification shall be suitable for fusion welding, bending, and other forming operations.1.2 Several grades of carbon steels are covered. Their compositions are given in Table 1.1.3 Supplementary requirements (S1 to S9) of an optional nature are provided. The supplementary requirements call for additional tests to be made, and when desired shall be so stated in the order, together with the number of such tests required.1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of each other. Combining values from the two systems may result in nonconformance with the specification.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

At this time none of these practices have been demonstrated to correlate with field service. Because these procedures do not restrict the selection of either the containment material or the fluid for testing, it is essential that consideration be given to the appropriate pairing of metal and fluid. Likewise, knowledge of the corrosion protection mechanism and the probable mode of failure of a particular metal is helpful in the selection of test conditions and the observation, interpretation, and reporting of test results. It is important that consideration be given to each of the permitted variables in test procedure so that the results will be meaningfully related to field performance. It is especially important that the time of testing selected be adequate to correctly measure the rate of corrosion of the containment material. Note 1—Corrosion, whether general or localized, is a time-dependent phenomenon. This time dependence can show substantial nonlinearity. For example, formation of a protective oxide will diminish corrosion with time, while certain forms of localized attack accelerate corrosion with time. The minimum time required for a test to provide a corrosion rate that can be extrapolated for the prediction of long-term performance varies widely, depending on the selection of metal and fluid, and on the form of corrosion attack. Therefore, it is not possible to establish a single minimum length of test applicable to all materials and conditions. However, it is recommended that for the tests described in these practices, a test period of no less than 6 months be used. Furthermore, it is recommended that the effect of time of testing be evaluated to detect any significant time dependence of corrosion attack. It is essential for the meaningful application of these procedures that the length of test be adequate to detect changes in the nature of the fluid that might significantly alter the corrosivity of the fluid. For example, exhaustion of chemical inhibitor or chemical breakdown of the fluid may occur after periods of months in selected cycles of operation. Note 2—Many fluids that may be considered for solar applications contain additives to minimize the corrosivity of the fluid. Many such additives are useful only within a specific concentration range, and some additives may actually accelerate corrosion if the concentration falls below a critical level. Depletion kinetics can be a strong function of the exposed metal surface area. Therefore, for tests involving fluids with such additives, consideration must be given to the ratio of metal surface area to fluid volume as it may relate to an operating system.1.1 These practices cover test procedures simulating field service for evaluating the performance under corrosive conditions of metallic containment materials in solar heating and cooling systems. All test results relate to the performance of the metallic containment material only as a part of a metal/fluid pair. Performance in these test procedures, taken by itself, does not necessarily constitute an adequate basis for acceptance or rejection of a particular metal/fluid pair in solar heating and cooling systems, either in general or in a particular design. 1.2 These practices describe test procedures used to evaluate the resistance to deterioration of metallic containment materials in the several conditions that may occur in operation of solar heating and cooling systems. These conditions include: (1) operating full flow; (2) stagnant empty vented; (3) stagnant, closed to atmosphere, non-draindown; and (4) stagnant, closed to atmosphere, draindown. 1.3 The recommended practices cover the following three tests: 1.3.1 Practice A—Laboratory Exposure Test for Coupon Specimens. 1.3.2 Practice B—Laboratory Exposure Test of Components or Subcomponents. 1.3.3 Practice C—Field Exposure Test of Components or Subcomponents. 1.4 Practice A provides a laboratory simulation of various operating conditions of solar heating and cooling systems. It utilizes coupon test specimens and does not provide for heating of the fluid by the containment material. Practice B provides a laboratory simulation of various operating conditions of a solar heating and cooling system utilizing a component or a simulated subcomponent construction, and does provide for heating of the fluid by the containment material. Practice C provides a field simulation of various operating conditions of solar heating and cooling systems utilizing a component or a simulated subcomponent construction. It utilizes controlled schedules of operation in a field test. 1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific safety precaution statement see Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers three grades, Grades A, B, and C, of carbon-manganese-silicon steel plates intended primarily for service in welded pressure vessels where improved low temperature notch toughness is important. The maximum thickness of plates is limited only by the capacity of the composition to meet the specified mechanical property requirements. The steel shall be killed and the plates shall undergo heat treatment. Tensile properties such as tensile strength, yield strength and elongation shall be determined by subjecting the steel plates to a tension test.1.1 This specification2 covers three grades of carbon-manganese-silicon steel plates intended primarily for service in welded pressure vessels where improved low temperature notch toughness is important.1.2 The maximum thickness of plates is limited only by the capacity of the composition to meet the specified mechanical property requirements.1.3 For plates produced from coil and furnished without heat treatment or with stress relieving only, the additional requirements, including additional testing requirements and the reporting of additional test results, of Specification A20/A20M apply.1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers lubricating greases suitable for the periodic relubrication of chassis systems and wheel bearings of passenger cars, trucks, and other vehicles.1.2 This specification defines the requirements used to describe the properties and performance characteristics of chassis greases and wheel bearing greases for service-fill applications.1.3 The test requirements (acceptance limits) given in this specification are, as the case may be, minimum or maximum acceptable values for valid duplicate test results. Apply no additional corrections for test precision, such as described in Practice D3244, inasmuch as the precision of the test methods was taken into account in the determination of the requirements.1.4 The values stated in SI units are to be regarded as standard.1.4.1 Exceptions—Test Method D2596 reports test results in kgf units, and Test Method D4289 reports rubber hardness in Durometer Shore A units.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Some fuel dilution of in-service engine oil is normal under typical operating conditions. However, excessive fuel dilution can lead to decreased performance, premature wear, or sudden engine failure. This test method provides a means of quantifying the level of fuel dilution, allowing the user to take necessary action. This test method does not purport to accurately quantify the specific fuel present in the in-service lubricant samples due to limitations associated with the aging and degradation of the fuel in the crankcase. Rather, quantification of diesel fuel is normalized using a simulated aged fuel.1.1 This test method covers the determination of fuel dilution for in-service engine oil by gas chromatography.1.2 Analysis can be performed directly by this test method without pretreatment or dilution of the sample.1.3 There is no limitation for the determination of the dilution range, provided the amount of sample is within the linear range of the gas chromatograph detector. However, sample dilution can add potential error to the result and may affect the precision obtained as compared to the values presented in Section 14, which were obtained with no dilution.1.4 This test method covers a quantitation range up to 10 % (m/m) for diesel and biodiesel, and up to 5 % (m/m) for gasoline.1.5 The values stated in SI units are to be regarded as standard. Where non-SI units are provided, they are shown in parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Preface This is the first edition of CSA N285.8, Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors. 1 Scope 1.1 This Standard specifies the technical requirements for the licensee to ensure struc

定价: 4550元 / 折扣价: 3868

在线阅读 收 藏

This specification covers malleable iron flanges, pipe fittings, and valve parts, including parts to be assembled for use in railroad, marine, and other heavy duty service applications. The sizes, shapes, and dimensions of the fittings shall conform to the requirements specified. The iron shall be produced under constant control of chemical composition and physical properties. Records of the chemical composition of the iron and of the physical properties of the test specimens shall be systematically made and maintained.1.1 This specification covers malleable iron flanges, pipe fittings, and valve parts, including parts to be assembled for use in railroad, marine, and other heavy-duty service applications where fittings furnished in accordance with American National Standard for Malleable Iron Threaded Fittings, Classes 150 and 300 (ANSI B16.3) are not considered adequate.1.2 Service shall include up to 650 °F (345 °C).21.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of sewer service laterals and its connection to the main through the use of a resin-impregnated tube installed within an existing sewer lateral. As for any practice, modifications may be required for specific job conditions.1.1 This practice covers requirements and test methods for the reconstruction of a sewer service lateral pipe having an inner diameter of 3 to 12 in. (7.6 to 30.5 cm) and its connection to the main pipe having an inner diameter of 6 to 24 in. (15.2 to 61.0 cm) and up the lateral a maximum of 150 ft (46 m) without excavation. The lateral pipe is accessed remotely from the main pipe and from a lateral access point. This will be accomplished by the installation of a resin impregnated one-piece main and lateral cured-in-place lining (MLCIPL) by means of air inflation and inversion. The MLCIPL is pressed against the host pipe by pressurizing a bladder and is held in place until the thermoset resins have cured. When cured, the MLCIPL shall be a continuous, one piece, tight fitting, corrosion resistant lining extending over a predetermined length of the lateral pipe and the adjacent section of the main pipe, providing a verifiable non-leaking structural connection and seal.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 There is no similar or equivalent ISO Standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers alloy steels having a chromium content equal to or less than 11.0% in plate, sheet, strip form for corrosion, and heat-resisting applications. Some steels, especially the high silicon containing steels, because of their particular alloy content and specialized properties, may require special care in their fabrication and welding. The steel shall conform to the requirements as to chemical composition. The mechanical properties such as tensile strength, yield strength, elongation and hardness shall be determined.1.1 This specification covers alloy steels having a chromium content equal to or less than 11.0 % in plate, sheet, strip form for corrosion, and heat-resisting applications.1.2 Some steels covered by this specification, especially the high silicon containing steels, because of their particular alloy content and specialized properties, may require special care in their fabrication and welding. Specific procedures are of fundamental importance, and it is presupposed that all parameters will be in accordance with approved methods capable of producing the desired properties in the finished fabrication.1.3 The values stated in inch-pound units or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.4 This specification and the applicable material specifications are expressed in both inch-pound and SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished in inch-pound units.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This specification covers the requirements for a prediluted aqueous propylene glycol (50 volume % minimum) base engine coolant for use in automobiles and light-duty vehicles. When used without further dilution, this product functions effectively during both summer and winter in automotive and other light-duty engine cooling systems to provide adequate cooling system performance.Note 1-This specification is based on the knowledge of the performance of engine coolants prepared from new or virgin ingredients. See Appendix X3 for more information.1.2 The units quoted in this specification are to be regarded as standard. The values given in parentheses are approximate equivalents provided for information purposes only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Some coating systems are developed for use over steel that is exposed to high temperatures during service life. This method provides an accelerated means of determining the performance of these coating systems. Testing of coatings designed for interior service, and of coatings designed for exterior (weather-exposed) service is included.1.1 These test methods cover the evaluation of the heat-resistant properties of coatings designed to protect steel surfaces exposed to elevated temperatures during their service life. Two test methods are described as follows:Method A—Interior Service CoatingsMethod B—Exterior Service Coatings1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide is intended as a guideline for fluid analysis programs and serves as an initial justification for selecting fluid tests and sampling frequencies. Plant operating experience along with the review and benchmarking of similar applications is required to ensure that lessons learned are implemented.5.2 Selection of proper fluid tests for assessing in-service component condition may have both safety and economic implications. Some failure modes may cause component disintegration, increasing the safety hazard. Thus, any fluid test that can predict such conditions should be included in the condition-monitoring program. Conversely, to maintain a sustainable and successful fluid-monitoring program, the scope of the fluid tests and their frequency should be carefully balanced between the associated risks versus expected program cost savings and benefits.5.3 The failure modes monitored may be similar from one application to the next, but the risk and consequences of failure may differ.5.4 This analysis can be used to determine which in-service lubricant analysis tests would be of highest value and which would be ineffective for the failure modes of interest. This information can also be used to determine the best monitoring strategy for a suite of failure modes and how often assessment is needed to manage the risk of failure.1.1 This guide describes a methodology to select tests to be used for in-service lubricant analysis. The selection of fluid tests for monitoring failure mode progression in industrial applications applies the principles of failure mode and effect analysis (FMEA).1.2 Although typical FMEA addresses all possible product failure modes, the focus of this guide is not intended to address failures that have a very high probability of unsafe operation as these should immediately be addressed by other means.1.3 This guide is limited to components selected for condition-monitoring programs by providing a methodology to choose fluid tests associated with specific failure modes for the purpose of identifying their earliest developing stage and monitoring fault progression. The scope of this guide is also focused on those failure modes and their consequences that can effectively be detected and monitored by fluid analysis techniques.1.4 This guide pertains to a process to be used to ensure an appropriate amount of condition monitoring is performed with the objective of improving equipment reliability, reducing maintenance costs, and enhancing fluid analysis monitoring of industrial machinery. This guide can also be used to select the monitoring frequencies needed to make the failure determinations and provide an assessment of the strengths and weaknesses of a current condition-monitoring program.1.5 This guide does not eliminate the programmatic requirements for appropriate assembly, operational, and maintenance practices.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Since the exposure of automotive coatings to the various mechanical and chemical stresses encountered in actual operations, is very opportunistic, obtaining statistically significant data from which valid conclusions can be drawn, requires rigorous attention to the experimental designs and conditions of exposure.1.1 This practice covers the protocol for vehicle service exposure testing of automotive coatings. Such exposure testing is valuable for the verification of the performance of automotive coatings and correlation with laboratory test data. Vehicle service exposure is intended to provide short term (2 to 20 weeks) exposure to the stress factors associated with vehicle operation. Factors included are scratch, mar, impact, stone chipping, insect impact, bird dropping, tree sap and staining, environmental fallout, etc.NOTE 1: Vehicle service exposure is not intended to provide the conditions that are needed for characterizing the long term effects of weathering or corrosion exposure.1.2 The exposure conditions are produced by the placement of multiple test panels of automotive finishes on automotive test fleets that traverse a defined road course. Exposure to the operating environment can be 20 h/day, 7 days/week allowing for accumulation of over 100 000 miles in 10 weeks of exposure.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
226 条记录,每页 15 条,当前第 2 / 16 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页