微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

5.1 Hydrogen is evolved during metal electrodeposition in aqueous baths. Some of this hydrogen enters parts during plating. If the absorbed hydrogen is at a level presenting embrittlement hazards to high-strength steel, it is removed by baking parts after plating to expel this hydrogen. However, the lack of plate porosity itself may block hydrogen egress. Thus, it becomes important to know both the relative amount of hydrogen absorbed and the plate porosity.5.2 This test provides a quantitative control number for cadmium plate porosity that can be used to control a cadmium plating process and the status of cadmium-plated hardware. It can also be used for plating process troubleshooting and research and development to determine the effects on plate porosity by process variables, contaminants, and materials. When used to control a critical process, control numbers for plate porosity must be determined by correlation with stress rupture specimens or other acceptable standards.5.3 There is no prime standard for plate porosity. For this reason, two ovens must be used, with tests alternated between ovens. Data from the ovens are compared to ensure no equipment change has occurred.1.1 This test method covers an electronic hydrogen detection instrument procedure for measurement of plating permeability to hydrogen. This method measures a variable related to hydrogen absorbed by steel during plating and to the hydrogen permeability of the plate during post plate baking. A specific application of this method is controlling cadmium-plating processes in which the plate porosity relative to hydrogen is critical, such as cadmium on high-strength steel.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement, see Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These test methods cover procedures for testing pressure-sensitive adhesive-coated tapes to be used as electrical insulation. These tapes are classified as follows:1.1.1 Class 1—Non-elastomeric backings made from materials such as:  Paper, flat or creped,  Fabric, uncoated or coated,  Cellulose ester films,  Polyethylene terephthalate (polyester) films,  Fluorocarbon polymer films,  Composite filament films,  Polyamide films,  Polyimide films, and  Combinations thereof.1.1.2 Class 2—Elastomeric backings that are characterized by both high stretch and substantial recovery. These backings are made from materials such as:  Vinyl chloride and co-polymers,  Vinylidene chloride and co-polymers, and  Polyethylene and co-polymers.1.2 Test laminates of Class 1 and Class 2 backings according to Class 1 test methods.1.3 The procedures appear in the sections indicated below and in alphabetical order:Adhesion Strength to Steel and Backing at Room Temperature 46 – 53Adhesion Strength to Steel and Backing at Low Temperatures 46 – 53Bond Strength After Solvent Immersion 110 – 115Breaking Strength and Elongation at Room Temperature 37 – 45Breaking Strength and Elongation at Low Temperatures 37 – 45Conditioning 6 – 8Curling and Twisting 140 – 146Dielectric Breakdown Voltage 83 – 90Effect of Accelerated Aging on High-Temperature Tapes 97 – 103Flagging 66 – 76Flammability 104 – 109Hazards/Precautions 3Insulation Resistance at High Humidity 91 – 96Length of Tape in a Roll 28 – 36Oil Resistance 116 – 122Puncture Resistance 123 – 128Resistance to Accelerated Aging (Heat and Moisture) 129 – 139Sampling 4Specimen Preparation 5Thermosetting Properties 77 – 82Thickness 21 – 27Unwind Force at Room Temperature 54 – 65Unwind Force at Low Temperatures 54 – 65Width 11 – 20NOTE 1: These procedures apply to both Class 1 and Class 2 tapes except as noted above.1.4 This is a fire-test response standard (see Section 104).1.5 The values stated in SI units are the standard, unless otherwise noted. If a value for measurement is followed by a value in inch-pound or English units in parentheses, it is likely that the second value will only be approximate and it is for information only. The first stated value is the preferred unit.NOTE 2: These test methods are similar to IEC 60454–3, but may differ sometimes in some details.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards see Section 3.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers bare round copper-clad steel wire for electronic application. Four classes of copper-clad steel wire are covered as Class 30HS, 30A, 40HS, and 40A. The wire shall consist of a core of homogeneous open-hearth, electric-furnace, or basic-oxygen steel with a continuous outer cladding of copper thoroughly bonded to the core throughout. The copper-lad steel wire shall conform to the tensile strength and elongation requirements. Electrical resistivity test shall be performed at a specified temperature of each class of wire and shall not exceed the values prescribed in this specification. Dimensional measurements shall be made with a micrometer caliper and shall withstand torsion test without fracturing. Copper cladding to the steel of each of the four specimens shall conform to the adhesion criterion. Surface finish shall meet the required allowable number of defects.1.1 This specification covers bare round copper-clad steel wire for electronic application.1.2 Four classes of copper-clad steel wire are covered as follows:1.2.1 Class 30HS—Nominal 30 % conductivity high-strength hard-drawn,1.2.2 Class 30HS-A—Nominal 30 % conductivity high-strength annealed,1.2.3 Class 40HS—Nominal 40 % conductivity high-strength hard-drawn, and1.2.4 Class 40HS-A—Nominal 40 % conductivity high-strength annealed.1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are in SI units.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice was written primarily to guide test participants in establishing, identifying, maintaining, and using suitable environments for conducting high quality neutron tests. Its development was motivated, in large measure, because inadequate controls in the neutron-effects-test process have, in some past instances, resulted in exposures that have differed by factors of three or more from irradiation specifications. A radiation test environment generally differs from the environment in which the electronics must operate (the operational environment); therefore, a high quality test requires not only the use of a suitable radiation environment, but also control and compensation for contributions to damage that differ from those in the operational environment. In general, the responsibility for identifying suitable test environments to accomplish test objectives lies with the sponsor/user/tester and test specialist part of the team, with the assistance of an independent validator, if available. The responsibility for the establishment and maintenance of suitable environments lies with the facility operator/dosimetrist and test specialist, again with the possible assistance of an independent validator. Additional guidance on the selection of an irradiation facility is provided in Practice F1190.4.2 This practice identifies the tasks that must be accomplished to ensure a successful high quality test. It is the overall responsibility of the sponsor or user to ensure that all of the required tasks are complete and conditions are met. Other participants provide appropriate documentation to enable the sponsor or user to make that determination.4.3 The principal determinants of a properly conducted test are: (1) the radiation test environment shall be well characterized, controlled, and correlated with the specified irradiation levels; (2) damage produced in the electronic materials and devices is caused by the desired, specified component of the environment and can be reproduced at any other suitable facility; and (3) the damage corresponding to the specification level derived from radiation environments in which the electronics must operate can be predicted from the damage produced by the test environment. In order to ensure that these requirements are met, system developers, procurers, users, facility operators, and test personnel must collectively meet all of the essential requirements and effectively communicate to each other the tasks that must be accomplished and the conditions that must be met. Criteria for determining and maintaining the suitability of neutron radiation environments for 1-MeV equivalent displacement damage testing of electronics parts are presented in Section 5. Mandatory requirements for test consistency in neutron displacement damage testing of electronic parts are presented in Section 5. Additional background material on neutron testing and important considerations for gamma dose and dose rate effects are presented in (non-mandatory) Appendix X1 and Appendix X2, but compliance is not required.4.4 Some neutron tests are performed with a specific end application for the electronics in mind. Others are performed merely to ensure that a 1-MeV-equivalent-displacement-damage-specification level is met. The issues and controls presented in this practice are necessary and sufficient to ensure consistency in the latter case. They are necessary, but may not be sufficient, when the objective is to determine device performance in an operational environment. In either case, a corollary consistency requirement is that test results obtained at a suitable facility can be replicated within suitable precision at any other suitable facility.4.4.1 An objective of radiation effects testing of electronic devices is often to predict device performance in operational environments from the data that is obtained in the test environments. If the operational and test environments differ materially from each other, then damage equivalence methodologies are required in order to make the required correspondences. This process is shown schematically in Fig. 1. The part of the process (A, in Fig. 1) that establishes the operational neutron environments required to select the appropriate 1-MeV-equivalent specification level, or levels, is beyond the scope of this practice. However, if a neutron spectrum is used to set a 1 MeV equivalent fluence specification level, it is important that the process (B, in Fig. 1) be consistent with this practice. Damage equivalence methodologies must address all of the important contributors to damage in the operational and test environments or the objectives of the test may not be met. In the mixed neutron-gamma radiation fields produced by nuclear reactors, most of the permanent damage in solid-state semiconductor devices results from displacement damage produced by fast neutrons through primary knock-on atoms and their associated damage cascades. The same damage functions must be used by all test participants to ensure damage equivalence. Damage functions for silicon and gallium arsenide are provided in the current edition of Practice E722 (see Note 1). At present, no damage equivalence methodologies for neutron displacement damage have been developed and validated for semiconductors other than silicon and gallium arsenide.FIG. 1 Process for Damage EquivalenceNOTE 1: When comparing test specifications and test results from data obtained in historical tests, it may be necessary to adjust specifications and test data to account for changes in damage functions which have evolved through the years as more accurate and reliable damage functions have become available.4.4.2 If a 1-MeV equivalent neutron fluence specification, or a neutron spectrum, is provided, the damage equivalence methodology, shown schematically in Fig. 1, is used to ensure that the correct neutron fluence is provided and that the damage in devices placed in the exposure position correlates with the displacement energy from the neutrons at that location.1.1 This practice sets forth requirements to ensure consistency in neutron-induced displacement damage testing of silicon and gallium arsenide electronic piece parts. This requires controls on facility, dosimetry, tester, and communications processes that affect the accuracy and reproducibility of these tests. It provides background information on the technical basis for the requirements and additional recommendations on neutron testing.1.2 Methods are presented for ensuring and validating consistency in neutron displacement damage testing of electronic parts such as integrated circuits, transistors, and diodes. The issues identified and the controls set forth in this practice address the characterization and suitability of the radiation environments. They generally apply to reactor sources, accelerator-based neutron sources, such as 14-MeV DT sources, and 252Cf sources. Facility and environment characteristics that introduce complications or problems are identified, and recommendations are offered to recognize, minimize or eliminate these problems. This practice may be used by facility users, test personnel, facility operators, and independent process validators to determine the suitability of a specific environment within a facility and of the testing process as a whole. Electrical measurements are addressed in other standards, such as Guide F980. Additional information on conducting irradiations can be found in Practices E798 and F1190. This practice also may be of use to test sponsors (organizations that establish test specifications or otherwise have a vested interest in the performance of electronics in neutron environments).1.3 Methods for the evaluation and control of undesired contributions to damage are discussed in this practice. References to relevant ASTM standards and technical reports are provided. Processes and methods used to arrive at the appropriate test environments and specification levels for electronics systems are beyond the scope of this practice; however, the process for determining the 1-MeV equivalent displacement specifications from operational environment neutron spectra should employ the methods and parameters described herein. Some important considerations and recommendations are addressed in Appendix X1 (Nonmandatory information).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers silver-coated copper braid and ribbon flat wire intended for electronic application. Two classes of silver-coated braid and ribbon flat copper wire are covered: Class A (annealed temper) and Class H (hard-drawn). The material shall be silver-coated flat wire of such quality and purity that the finished product shall meet the properties and characteristics prescribed in this specification. The specification covers tensile properties, electrical resistivity requirements, permissible variations in thickness, and permissible variations in width.1.1 This specification covers silver-coated copper braid and ribbon flat wire intended for electronic application (Explanatory Note 1).1.2 Two classes of silver-coated braid and ribbon flat copper wire are covered as follows:1.2.1 Class A—Annealed temper.1.2.2 Class H—Hard-drawn.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3.1 Exceptions—The SI values for density, resistivity, and volume are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers nickel-coated copper braid and ribbon flat wire intended for electronic application. Two classes of nickel-coated braid and ribbon flat copper wire are covered: Class A (annealed temper) and Class H (hard-drawn). The material shall be nickel-coated flat wire of such quality and purity that the finished product shall meet the properties and characteristics prescribed in this specification. The specification covers tensile properties, electrical resistivity requirements, permissible variations in thickness, and permissible variations in width.1.1 This specification covers nickel-coated copper braid and ribbon flat wire intended for electronic application (Explanatory Note 1).1.2 Two classes of nickel-coated braid and ribbon flat copper wire are covered as follows:1.2.1 Class A—Annealed temper.1.2.2 Class H—Hard-drawn.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3.1 Exceptions—The SI values for density, resistivity, and volume are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers tin-coated hard-drawn copper braid and ribbon flat wire intended for electronic application. The tin shall be electroplated for the coating and shall be commercially pure. For purposes of this specification, the tin shall be considered commercially pure if the total of other elements, exclusive of copper, does not exceed 1%. This specification covers electrical resistivity requirements, permissible variations in thickness, permissible variations in width, and limiting number of test specimens for coating test.1.1 This specification covers tin-coated hard-drawn copper braid and ribbon flat wire intended for electronic application (Explanatory Note 1).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 Exceptions—The SI values for density, resistivity, and volume are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Division of the Co-60 Hardness Testing into Five Parts: 4.1.1 The equilibrium absorbed dose shall be measured with a dosimeter, such as a TLD, located adjacent to the device under test. Alternatively, a dosimeter may be irradiated in the position of the device before or after irradiation of the device.4.1.2 This absorbed dose measured by the dosimeter shall be converted to the equilibrium absorbed dose in the material of interest within the critical region within the device under test, for example the SiO2 gate oxide of an MOS device.4.1.3 A correction for absorbed-dose enhancement effects shall be considered. This correction is dependent upon the photon energy that strikes the device under test.4.1.4 A correlation should be made between the absorbed dose in the critical region (for example, the gate oxide mentioned in 4.1.2) and some electrically important effect (such as charge trapped at the Si/SiO2 interface as manifested by a shift in threshold voltage).4.1.5 An extrapolation should then be made from the results of the test to the results that would be expected for the device under test under actual operating conditions.NOTE 5: The parts of a test discussed in 4.1.2 and 4.1.3 are the subject of this practice. The subject of 4.1.1 is covered and referenced in other standards such as Practice E668 and ICRU Report 14. The parts of a test discussed in 4.1.4 and 4.1.5 are outside the scope of this practice.4.2 Low-Energy Components in the Spectrum—Some of the primary Co-60 gamma rays (1.17 and 1.33 MeV) produce lower energy photons by Compton scattering within the Co-60 source structure, within materials that lie between the source and the device under test, and within materials that lie beyond the device but contribute to backscattering. As a result of the complexity of these effects, the photon energy spectrum striking the device usually is not well known. This point is further discussed in Section 5 and Appendix X1. The presence of low-energy photons in the incident spectrum can result in dosimetry errors. This practice defines test procedures that should minimize dosimetry errors without the need to know the spectrum. These recommended procedures are discussed in 4.5, 4.6, Section 7, and Appendix X5.4.3 Conversion to Equilibrium Absorbed Dose in the Device Material—The conversion from the measured absorbed dose in the material of the dosimeter (such as the CaF2 of a TLD) to the equivalent absorbed dose in the material of interest (such as the SiO2 of the gate oxide of a device) is dependent on the incident photon energy spectrum. However, if the simplifying assumption is made that all incident photons have the energies of the primary Co-60 gamma rays, then the conversion from absorbed dose in the dosimeter to that in the device under test can be made using tabulated values for the energy absorption coefficients for the dosimeter and device materials. Where this simplification is appropriate, the error incurred by its use to determine equilibrium absorbed dose is usually less than 5 % (see 6.3).4.4 Absorbed-Dose Enhancement Effects—If a higher atomic number material lies adjacent to a lower atomic number material, the energy deposition in the region adjacent to the interface is a complex function of the incident photon energy spectrum, the material composition, and the spatial arrangement of the source and absorbers. The absorbed dose near such an interface cannot be adequately determined using the procedure outlined in 4.3. Errors incurred by failure to account for these effects may, in unusual cases, exceed a factor of five. Because microelectronic devices characteristically contain layers of dissimilar materials with thicknesses of tens of nanometres, absorbed-dose enhancement effects are a characteristic problem for irradiation of such devices (see 6.1 and Appendix X2).4.5 Minimizing Absorbed-Dose Enhancement Effects—Under some circumstances, absorbed-dose enhancement effects can be minimized by hardening the spectrum. Hardening is accomplished by the use of high atomic number absorbers to remove low energy components of the spectrum, and by minimizing the amount and proximity of low atomic number material to reduce softening of the spectrum by Compton scattering (see Sections 6 and 7).4.6 Limits of the Dosimetry Errors—To correct for absorbed-dose enhancement by calculational methods would require a knowledge of the incident photon energy spectrum and the detailed structure of the device under test. To measure absorbed-dose enhancement would require methods for simulating the irradiation conditions and device geometry. Such corrections are impractical for routine hardness testing. However, if the methods specified in Section 7 are used to minimize absorbed-dose enhancement effects, errors due to the absence of a correction for these effects can be kept within bounds that may be acceptable for many users. An estimate of these error bounds for representative cases is given in Section 7 and Appendix X5.4.7 Application to Non-Silicon Devices—The material of this practice is primarily directed toward silicon based solid state electronic devices. The application of the material and recommendations presented here should be applied to gallium arsenide and other types of devices only with caution.1.1 This practice covers recommended procedures for the use of dosimeters, such as thermoluminescent dosimeters (TLD's), to determine the absorbed dose in a region of interest within an electronic device irradiated using a Co-60 source. Co-60 sources are commonly used for the absorbed dose testing of silicon electronic devices.NOTE 1: This absorbed-dose testing is sometimes called “total dose testing” to distinguish it from “dose rate testing.”NOTE 2: The effects of ionizing radiation on some types of electronic devices may depend on both the absorbed dose and the absorbed dose rate; that is, the effects may be different if the device is irradiated to the same absorbed-dose level at different absorbed-dose rates. Absorbed-dose rate effects are not covered in this practice but should be considered in radiation hardness testing.1.2 The principal potential error for the measurement of absorbed dose in electronic devices arises from non-equilibrium energy deposition effects in the vicinity of material interfaces.1.3 Information is given about absorbed-dose enhancement effects in the vicinity of material interfaces. The sensitivity of such effects to low energy components in the Co-60 photon energy spectrum is emphasized.1.4 A brief description is given of typical Co-60 sources with special emphasis on the presence of low energy components in the photon energy spectrum output from such sources.1.5 Procedures are given for minimizing the low energy components of the photon energy spectrum from Co-60 sources, using filtration. The use of a filter box to achieve such filtration is recommended.1.6 Information is given on absorbed-dose enhancement effects that are dependent on the device orientation with respect to the Co-60 source.1.7 The use of spectrum filtration and appropriate device orientation provides a radiation environment whereby the absorbed dose in the sensitive region of an electronic device can be calculated within defined error limits without detailed knowledge of either the device structure or of the photon energy spectrum of the source, and hence, without knowing the details of the absorbed-dose enhancement effects.1.8 The recommendations of this practice are primarily applicable to piece-part testing of electronic devices. Electronic circuit board and electronic system testing may introduce problems that are not adequately treated by the methods recommended here.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

4.1 Although Co-60 nuclei only emit monoenergetic gamma rays at 1.17 and 1.33 MeV, the finite thickness of sources, and encapsulation materials and other surrounding structures that are inevitably present in irradiators can contribute a substantial amount of low-energy gamma radiation, principally by Compton scattering (1, 2).3 In radiation-hardness testing of electronic devices this low-energy photon component of the gamma spectrum can introduce significant dosimetry errors for a device under test since the equilibrium absorbed dose as measured by a dosimeter can be quite different from the absorbed dose deposited in the device under test because of absorbed dose enhancement effects (3, 4). Absorbed dose enhancement effects refer to the deviations from equilibrium absorbed dose caused by non-equilibrium electron transport near boundaries between dissimilar materials.4.2 The ionization chamber technique described in this method provides an easy means for estimating the importance of the low-energy photon component of any given irradiator type and configuration.4.3 When there is an appreciable low-energy spectral component present in a particular irradiator configuration, special experimental techniques should be used to ensure that dosimetry measurements adequately represent the absorbed dose in the device under test. (See Practice E1249.)1.1 Low energy components in the photon energy spectrum of Co-60 irradiators lead to absorbed dose enhancement effects in the radiation-hardness testing of silicon electronic devices. These low energy components may lead to errors in determining the absorbed dose in a specific device under test. This method covers procedures for the use of a specialized ionization chamber to determine a figure of merit for the relative importance of such effects. It also gives the design and instructions for assembling this chamber.1.2 This method is applicable to measurements in Co-60 radiation fields where the range of exposure rates is 7 × 10 −6 to 3 × 10−2 C kg −1 s−1 (approximately 100 R/h to 100 R/s). For guidance in applying this method to radiation fields where the exposure rate is >100 R/s, see Appendix X1.NOTE 1: See Terminology E170 for definition of exposure and its units.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏
94 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页