微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method provides a means to measure a variety of fire-test-response characteristics associated with smoke obscuration and resulting from burning the electrical insulating materials contained in electrical or optical fiber cables. The specimens are allowed to burn freely under well ventilated conditions after ignition by means of a propane gas burner.5.2 Smoke obscuration quantifies the visibility in fires.5.3 This test method is also suitable for measuring the rate of heat release as an optional measurement. The rate of heat release often serves as an indication of the intensity of the fire generated. Test Method D5537 provides means for measuring heat release with the equipment used in this test method.5.4 Other optional fire-test-response characteristics that are measurable by this test method are useful to make decisions on fire safety. The most important gaseous components of smoke are the carbon oxides, present in all fires. They are major indicators of the toxicity of the atmosphere and of the completeness of combustion, and are often used as part of fire hazard assessment calculations and to improve the accuracy of heat release measurements. Other toxic gases, which are specific to certain materials, are less crucial for determining combustion completeness.5.5 Test Limitations: 5.5.1 The fire-test-response characteristics measured in this test method are a representation of the manner in which the specimens tested behave under certain specific conditions. Do not assume they are representative of a generic fire performance of the materials tested when made into cables of the construction under consideration.5.5.2 In particular, it is unlikely that this test method is an adequate representation of the fire behavior of cables in confined spaces, without abundant circulation of air.5.5.3 This is an intermediate-scale test, and the predictability of its results to large scale fires has not been determined. Some information exists to suggest that it has been validated against some large-scale scenarios.1.1 This is a fire-test-response standard.1.2 This test method provides a means to measure the smoke obscuration resulting from burning electrical insulating materials contained in electrical or optical fiber cables when the cable specimens, excluding accessories, are subjected to a specified flaming ignition source and burn freely under well ventilated conditions.1.3 This test method provides two different protocols for exposing the materials, when made into cable specimens, to an ignition source (approximately 20 kW), for a 20 min test duration. Use it to determine the flame propagation and smoke release characteristics of the materials contained in single and multiconductor electrical or optical fiber cables designed for use in cable trays.1.4 This test method does not provide information on the fire performance of electrical or optical fiber cables in fire conditions other than the ones specifically used in this test method, nor does it measure the contribution of the cables to a developing fire condition.1.5 Data describing the burning behavior from ignition to the end of the test are obtained.1.6 The production of light obscuring smoke is measured.1.7 The burning behavior is documented visually, by photographic or video recordings, or both.1.8 The test equipment is suitable for making other, optional, measurements, including the rate of heat release of the burning specimen, by an oxygen consumption technique and weight loss.1.9 Another set of optional measurements are the concentrations of certain toxic gas species in the combustion gases.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. (See IEEE/ASTM SI 10.)1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.13 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
ASTM B314-90 Specification for Aluminum 1350 Wire for Communication Cable (Withdrawn 1994) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers track-resistant black thermoplastic high-density polyethylene insulation for conducting wires and cables operating continuously at a specified conductor temperature. The insulation is suitable for use for power transmission in overhead spaced-line service that is exposed to sunlight and other atmospheric environments. The prescribed tests cannot be performed unless the insulation is formed around a conductor, but these are done solely to determine the insulation properties and not to test the conductor or completed cable. Each test sample should be subjected to an ac or dc voltage withstand test at voltages that are based on the nominal thickness of the insulation and should comply with the required values for aging, heat distortion, cold blend, U-bend discharge, track resistance, tensile strength, elongation at rupture, environmental cracking, and surface resistivity.1.1 This specification covers track-resistant thermoplastic high-density polyethylene insulation. Before application to the conductor, the insulation shall comply with the requirements of Specification D1248, Type III, Class C or D, Category 5, Grade E10, J4, or J5. The requirements of Specification D1248 shall not apply to the insulation removed from the conductor.1.2 This type of insulation is considered suitable for use on wire or cable that will be used for continuous operation at conductor temperatures up to 75 °C.1.3 This insulation is suitable for use on wire or in cable used for power transmission in overhead spaced-line service, installed at temperatures above −25 °C and exposed to sunlight and other atmospheric environments between −55 and +75 °C.1.4 In many instances, the insulation cannot be tested unless it has been formed around a conductor. Therefore, tests done on insulated wire in this standard are solely to determine the relevant property of the insulation and not to test the conductor or completed cable.1.5 Whenever two sets of values are presented, in different units, the values in the first set are to be regarded as standard. The values given in parentheses are mathematical conversions that are provided for information only and are not considered standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers track-resistant black crosslinked polyethylene insulation for conducting wires and cables operating continuously at a specified conductor temperature. The insulation is suitable for use for power transmission in overhead spaced-line service that is exposed to sunlight and other atmospheric environments. The prescribed tests cannot be performed unless the insulation is formed around a conductor, but these are done solely to determine the insulation properties and not to test the conductor or completed cable. Each test sample should be subjected to an ac or dc voltage withstand test at voltages that are based on the nominal thickness of the insulation and should comply with the required values for aging, heat distortion, cold blend, U-bend discharge, track resistance, tensile strength, elongation at rupture, track resistance, and surface resistivity.1.1 This specification covers a track-resistant crosslinked polyethylene insulation, the base polymer which consists substantially of polyethylene or its copolymers. This insulation shall be carbon black pigmented, or colored and suitably protected to enable UV stability.1.2 This type of insulation is considered suitable for use on wire or cable that will be used for continuous operation at conductor temperatures up to 90 °C.1.3 This insulation is suitable for use on wire or in cable used for power transmission in overhead spaced-line service, installed at temperatures above −25° and exposed to sunlight and other atmospheric environments between −55 and +90 °C.1.4 In many instances, the insulation cannot be tested unless it has been formed around a conductor. Therefore, tests done on insulated wire in this standard are solely to determine the relevant property of the insulation and not to test the conductor or completed cable.1.5 Whenever two sets of values are presented, in different units, the values in the first set are to be regarded as standard. The values given in parentheses are mathematical conversions that are provided for information only and are not considered standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers thermoplastic fluoropolymer-based materials, intended for use as an encapsulation material for downhole cables used during well completion by the petroleum and natural gas industries.1.1.1 The fluoropolymer-based materials to be used for this purpose shall be virgin materials and shall be permitted to contain up to 25 %, by weight, of reprocessed material (regrind) of the same fluoropolymer generic material type. When reprocessed material is included, it shall be thoroughly mixed with virgin material.1.2 The fluoropolymers covered by this specification include but are not limited to the following: ethylene tetrafluoroethylene (ETFE), polyethylene chlorotetrafluoroethylene (ECTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVDF), copolymers of PVDF, polychlorotrifluoroethylene (PCTFE), polytetrafluoroethylene (PTFE), and perfluoroalkoxy alkane (PFA).1.3 This specification establishes common temperature ratings for the encapsulation materials and also describes requirements for alternative temperature ratings.1.4 The applications for the encapsulation materials covered by this specification are all associated with downhole cables used during well completion. Such applications include, but are not limited to, the following: control lines (CL), tubing encased conductors (TEC), tubing encased fiber cables (TEF), and tubing encased power cables (TEPC). Other downhole cable products such as surface-controlled sub-surface safety valves (SCSSV or SSSV) and chemical injection lines/chemical injection tubes (CIL/CIT) are also covered by this specification.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers two sizes of extra-high-strength grade of concentric-lay steel wire strand, composed of seven, zinc-coated steel wires, specifically intended for use as the supporting messenger in Figure 8-type communication and electrical cables. Steel wires shall be manufactured by the open-hearth, basic-oxygen, or electric-furnace process. Materials shall adhere to specified mechanical and physical requirements such as breaking strength, elongation, ductility, nominal diameter, and coating weight and adherence. Zinc coatings shall be continuous and of reasonably uniform thickness, and wires shall be free from imperfections not consistent with good commercial practice.1.1 This specification covers two sizes of extra-high-strength grade of concentric-lay steel wire strand, composed of seven, zinc-coated steel wires, specifically intended for use as the supporting messenger in Figure 8-type communication and electrical cables.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification provides for the identification of polyethylene plastics extrusion materials for wire and cable in such a manner that the seller and the purchaser can agree on the acceptability of different commercial lots or shipments. The polyethylene plastics are identified primarily on the basis of two characteristics, namely, density and flow rate (previously identified as melt index). The former is the criterion for assignment as to type which are as follows: Type 0,Type I, Type II, Type III, and Type IV, the latter for designation as to category which are: Category 1,Category 2, Category 3,Category 4, and Category 5. Other attributes important for certain applications are covered by three general classes and by specifying in greater detail, by grades, a minimum number of key characteristics covered too broadly or not at all by the type, class, and category designations. Each of five types and categories is subdivided into four classes according to composition and use as follows: Class A, Class B, Class C, and Class D. In addition, the materials can be classified into different grades namely Grade E1, Grade E2, Grade E3, Grade E4, Grade E5, Grade E6, Grade E7, Grade E8, Grade E9, and Grade E10. The extrusion material for wire and cable shall be polyethylene plastic in the form of powder, granules, or pellets. The extrusion materials for wire and cable shall be as uniform in composition and size and as free of contamination as can be achieved by good manufacturing practice. Different tests shall be conducted in order to determine the following physical properties of extrusion materials: tensile stress, elongation, brittleness temperature, environmental stress-crack resistance, thermal stress-crack resistance without cracking, dissipation factor before and after milling, dielectric constant, volume resistivity, water immersion stability, absorption coefficient, weatherability for colored materials, and carbon content.1.1 This specification provides for the identification of polyethylene plastics extrusion materials for wire and cable in such a manner that the seller and the purchaser can agree on the acceptability of different commercial lots or shipments. The tests involved in this specification are intended to provide information for identifying materials according to the types, classes, categories, and grades covered. It is not the function of this specification to provide specific engineering data for design purposes.1.2 This specification does not allow for the use of recycled plastics (see Note 3).1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 The following safety hazards caveat pertains only to the test method portion, Section 12, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.NOTE 2: This standard has undergone major revision from the reapproval of 1989 and now covers only polyethylene for wire and cable applications. For information regarding molding and extrusion materials, see Specification D4976. For information regarding plastic pipe materials, see Specification D3350.NOTE 3: See Guide D7209and 3.1.2 of this standard for information and definitions related to recycled plastics.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 Thermocouples fabricated from thermocouple cable that has been contaminated by moisture or by other impurities may undergo large changes in thermoelectric properties or may fail catastrophically when exposed to high temperatures. Since such contamination usually lowers the electrical resistance between the thermoelements and the sheath substantially, measurement of the insulation resistance can provide a valuable check of insulation quality and cleanliness, and can serve as a basis for rejection of unsuitable material and unreliable components. For manufacturers in particular, low electrical insulation resistance can also be indicative of displaced thermoelements or conductors or defects in the metal sheath which will require further investigation, but all users should be aware of these potential defects when faced with an unacceptable insulation resistance measurement.5.2 This test method is primarily intended for use by manufacturers and users of mineral-insulated, metal-sheathed (MIMS) thermocouples or MIMS cables to verify that measured values of insulation resistance exceed specified minimum values, such as those listed in Specifications E235, E585/E585M, E608/E608M, E2181/E2181M, and E2821. Manufacturers and users should be aware, however, that when the insulation resistance is greater than 1 × 108 Ω, disagreement by an order of magnitude in the results obtained with this test method is not unusual. In addition, users of this test method should appreciate that the room temperature insulation resistance of both MIMS cables and of finished thermocouples will change during shipment, storage, and use if the end seals are damaged or defective. Consequently, values of insulation resistance determined by this test method may not necessarily be repeatable.1.1 This test method provides the procedures for measuring the room temperature electrical insulation resistance between the thermoelements and between the thermoelements and the sheath, of a mineral-insulated, metal-sheathed (MIMS) thermocouple or mineral-insulated, metal-sheathed (MIMS) thermocouple cable or between the conductors and between the conductors and the sheath, of mineral-insulated, metal-sheathed (MIMS) cable used for industrial resistance thermometers. It may be used to measure the insulation resistance of bulk lengths of mineral-insulated, metal-sheathed MIMS cable previously sealed against moisture intrusion or to test a thermocouple having an ungrounded measuring junction. This method cannot be used to test a thermocouple having a grounded measuring junction unless the measuring junction is removed prior to testing, after which the thermocouple may be dealt with in the same manner as a mineral-insulated, metal-sheathed (MIMS) cable.1.2 This test method applies primarily to thermocouple cables and cable used for industrial resistance thermometers conforming to Specifications E585/E585M, E2181/E2181M, and E2821 and to thermocouples conforming to Specifications E608/E608M and E2181/E2181M, but may also be applied to thermocouples or MIMS cables that are suitable for use in air, whose sheath or thermoelements or conductors are comprised of refractory metals, that are tested in a dry and chemically inert environment, and that may employ compacted ceramic insulating materials other than magnesia (MgO) or alumina (Al2O3). Users of this test method should note that specifications dealing with compacted ceramic insulating materials other than magnesia or alumina, which are described in Specification E1652, are not currently available. As a result, acceptance criteria must be agreed upon between the customer and supplier at the time of purchase, or alternatively, judgment and experience must be applied in establishing test voltage levels and acceptable insulation resistance values for these types of thermocouples and MIMS cables.1.3 This test method may be used for thermocouples or MIMS cables having an outside diameter of 0.5 mm (0.020 in.) or larger.1.4 Users of this test method should be aware that the room temperature insulation resistance of a mineral-insulated, metal-sheathed thermocouple or MIMS cable will change during shipment, storage, or use if they are not properly sealed.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers a variety of compounds used for flooding the shields and armors of telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating along or through the cable sheath. The material may be of any chemical composition suitable for the intended purpose and should meet the requirements specified. The flooding compound shall display adhesive properties to provide adhesion between metallic sheath elements and the outer jacket materials of wire and cable. All flooding compounds manufactured in conformance to this specification shall meet the following requirements: homogeneity and foreign material.1.1 This specification covers a variety of compounds used for flooding the shields and armors of telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating along or through the cable sheath. (For related standards see Specifications D4731 and D4732.)1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers a variety of petroleum-based and other compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. The two basic types of filling compounds are specified: Type I which are general-purpose filling compounds that include all materials to be used for filling cables that are not required to function under electrical stress and Type II which are electrical-type filling compounds that include materials having prescribed electrical properties and used for filling wires and cables that are required to function fully or partially under electrical stress. Filling compound furnished shall inhibit the corrosion of any metallic wire and cable elements with which it comes in contact, while serving as a radial and longitudinal barrier to moisture transmission. Contact of the filling compound with any cable component shall not cause degradation of performance of the cable component. The filling compound shall display adhesive properties to provide adhesion between metallic sheath elements and the outer jacket materials of wire and cable. The following properties of filling compounds manufactured shall be determined: homogeneity, color and opacity, color stability, foreign materials, and other properties that includes volatility, thermal oxidative stability, and corrosion prevention.1.1 This specification covers a variety of petroleum-based and other compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. (For related standards see Specifications D4730 and D4732).1.2 A hot-application compound is a material that requires melting in order to be applied as a liquid and its melting point affects its performance in the finished cable product.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers two types of cool-application compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. Type I are general-purpose filling compounds including all materials to be used for filling cables that are not required to function under electrical stress (for example, all-dielectric fiber-optic cable), including filling compounds for fiber-optic loose buffer tubes. While, Type II are electrical-type filling compounds including materials having prescribed electrical properties and used for filling wires and cables that are required to function fully or partially under electrical stress (including hybrid fiber-optic cable). Though chemical composition is not specified, the filling compounds shall, however, be tested and conform accordingly to the following electrical, physical, and temperature characteristics, as agreed upon between producer and purchaser: dissipation factor; volume resistivity; corrosion inhibition; adhesion; flash point; high-temperature drip/oil separation (syneresis) in the raw material state; evaporation loss; water resistance; homogeneity; color and opacity; color stability; foreign materials; volatility; thermal oxidative stability; cone penetration; pour point; drop-melting point; viscosity; congealing point; drop point; cable drip-out temperature; and cold-bend low-temperature flexibility.1.1 This specification covers a variety of compounds used for filling the air spaces in telecommunications wires and cables (both electrical and fiber optic) for the purpose of preventing water and other undesirable fluids from entering or migrating through the cable structure. (For related standards see Specifications D4730 and D4731.)1.2 A cool-application compound is a material that has sufficiently low viscosity that it does not require heating.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is intended to assist engineers and sewer owner/operators in determining the suitability of sewers for a secondary use as hosts for optical fiber cables and conduits. It must be kept in mind that the primary use of the sewers is to carry wastewater or storm water, or both. Any secondary use of the system shall not significantly impair the primary use. It is up to the engineer to decide upon any exceptions that may be involved in the selection process.5.2 Before the selection procedure begins, the installer must have explicit authorization from the owner/operator allowing an evaluation to be conducted for the installation of optical fiber cables or conduits within their sewer system.5.3 Engineers and owners should also be cognizant of how the installation of optical fiber cable or conduits will impact the future operational, maintenance, and rehabilitation needs of the sewers.1.1 This practice specifically addresses the criteria for determining the suitability of gravity sewers for secondary uses such as the installation of optical fiber systems.1.1.1 This practice applies to the process of selecting gravity sewers that are appropriate for accepting an optical fiber system as opposed to standards for the installation, operation and maintenance of such system within sewers.1.2 This practice applies to both man accessible and man inaccessible sewer systems.1.3 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers thermoplastic polymer insulation consisting substantially of polyethylene considered suitable for use on electrical wire or cable with specified maximum conductor sizes that will be used for continuous operation at specified conductor temperatures and maximum voltage ratings for power application or series lighting. Since the insulation material cannot be tested unless it has been formed around a conductor, tests shall then be done on insulated wire or cable in this specification are solely to determine the relevant property of the insulation material and not to test the insulated conductor or completed cable. Materials shall conform to physical properties as to unaged tensile strength and elongation at rupture, tensile strength and elongation at rupture after air oven aging, absorption coefficient, and insulation thickness. Insulations shall also be tested for their electrical performance in terms of AC and DC voltage, partial discharge, and insulation resistance.1.1 This specification covers a thermoplastic insulation which consists substantially of polyethylene.1.2 This type of insulation is considered suitable for use on wire or cable that will be used for continuous operation at conductor temperatures up to 75 °C with a maximum conductor size of 1000 kcmil (507 mm2). The maximum voltage rating shall not exceed 35 000 V for power application or 9 000 V for series lighting.1.3 In many instances the insulation material cannot be tested unless it has been formed around a conductor. Therefore, tests done on insulated wire or cable in this specification are solely to determine the relevant property of the insulation material and not to test the insulated conductor or completed cable.1.4 Whenever two sets of values are stated, in different units, the values in the first set are regarded as standard, while the values in parentheses are provided for information only and are not considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers thermoplastic insulating materials made of poly(vinyl chloride) or the copolymer of vinyl chloride and vinyl acetate recommended for use in wires and cables operating in wet or dry locations at specified conductor temperatures and maximum voltage ratings for power and control circuits. Since the insulation material cannot be tested unless it has been formed around a conductor or cable, tests shall then be done on insulated wire or cable solely to determine the relevant property of the insulation material and not to test the conductor or completed cable. Materials shall conform to the following physical requirements: unaged tensile strength and elongation at rupture; tensile strength and elongation after air oven aging; heat shock; heat distortion; behavior during vertical flame test; oil resistance; tensile strength and elongation after oil immersion; behavior during cold bend test, and size and thickness. Insulations shall also perform satisfactorily during tests for AC and DC voltage, insulation resistance, accelerated water absorption, and dielectric strength retention.1.1 This specification covers a thermoplastic insulation of poly(vinyl chloride) or the copolymer of vinyl chloride and vinyl acetate.1.2 This insulation is recommended for use at conductor temperatures not in excess of 60 °C in wet or dry locations at a maximum voltage rating of 600 V for power and control circuits.1.3 In many instances, the insulation material cannot be tested unless it has been formed around a conductor or cable. Therefore, tests are done on insulated wire or cable in this specification solely to determine the relevant property of the insulation material and not to test the conductor or completed cable.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4.1 In some cases (including the title), temperatures are described in degrees Celsius only.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers a thermoplastic poly(vinyl chloride) insulation for wire and cable at the prescribed temperature. This insulation is recommended for use in power and control circuits at the specified thickness and voltage ratings and to dry locations. Tests are done on insulated wire or cable in this specification solely to determine the relevant property of the insulation material and not to test the conductor or completed cable. The insulation shall conform to the physical property requirements prescribed for the following: (1) tensile strength and elongation for unaged specimen and aged (using air oven test) tubular and buffed die-cut specimen, (2) heat shock, (3) heat distortion, (4) vertical flame test, (5) tensile strength and elongation for oil resistance test, and (6) cold bond test. Electrical tests shall be performed in the following order: ac voltage test, insulation resistance test, and dc voltage test. The insulation shall conform to the other electrical requirements such as accelerated water absorption (including permittivity and capacitance) and dielectric strength, and shall meet the prescribed thickness as well.1.1 This specification covers a thermoplastic insulation of poly(vinyl chloride) or the copolymer of vinyl chloride and vinyl acetate.1.2 This insulation is recommended for use in power and control circuits at temperatures not higher than 75 °C. At a thickness of 15 mils (0.38 mm), application is limited to voltage ratings below 300 V, and to dry locations. At a thickness of 30 mils, the application range is widened to dry or wet applications, and to a voltage rating of 600 V.1.3 In many instances the insulation material cannot be tested unless it has been formed around a conductor or cable. Therefore, tests are done on insulated wire or cable in this specification solely to determine the relevant property of the insulation material and not to test the conductor or completed cable.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4.1 In come cases (including the title), temperatures are described in degrees Celsius only.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
48 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页