微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 These test methods cover the chemical analysis of solid chromated copper arsenate and solutions of this material. 1.1.1 Test Method D 38 covers the sampling of wood preservatives prior to testing. 1.2 The analytical procedures occur in the following order: Sections Pentavalent arsenic (calculated as As2O5) 7 to 9 Copper (calculated as CuO) 10 to 13 Hexavalent chromium (calculated as CrO3) 14 to 16 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 8.2, 12.1.2, and in accordance with the safety precautions section of Test Method D4278.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications, particularly those under the jurisdiction of ASTM Committee A04 on Iron Castings. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods cover the chemical analysis of pig iron, gray cast iron (including alloy and austenitic), white cast iron, malleable cast iron, and ductile (nodular) iron having chemical compositions within the following limits:Element Composition Range, % Aluminum 0.003 to  0.50Antimony 0.005 to  0.03Arsenic 0.02  to  0.10Bismuth 0.001 to  0.03Boron 0.001 to  0.10Cadmium 0.001 to 0.005Carbon 1.25  to  4.50Cerium 0.005 to  0.05Chromium 0.01  to 30.00Cobalt 0.01  to  4.50Copper 0.03  to  7.50Lead 0.001 to  0.15Magnesium 0.002 to  0.10Manganese 0.06  to  2.50Molybdenum 0.01  to  5.00Nickel 0.01  to 36.00Phosphorus 0.01  to  0.90Selenium 0.001 to  0.06Silicon 0.10 to 6.0   Sulfur 0.005 to  0.25Tellurium 0.001 to  0.35Tin 0.001 to  0.35Titanium 0.001 to  0.20Tungsten 0.001 to  0.20Vanadium 0.005 to  0.50Zinc 0.005 to  0.201.2 The test methods in this standard are contained in the sections indicated below:  Sections Carbon, Graphitic, by the Direct Combustion Infrared Absorption Method (1 % to 3 %) 108–115Carbon, Total by the Combustion Gravimetric Method (1.25 % to 4.50 %)—Discontinued 2012  97–107Cerium and Lanthanum by the Direct Current Plasma Atomic Emission Spectrometry Method (Ce: 0.003 % to 0.5 %; La: 0.001 % to 0.30 %) 237–245Chromium by the Atomic Absorption Method (0.006 % to 1.00 %) 208–217Chromium by the Peroxydisulfate Oxidation—Titration Method (0.05 % to 30.0 %) 218–226Chromium by the Peroxydisulfate-Oxidation Titrimetric Method (0.05 % to 30.0 %)—Discontinued 1980 144–151Cobalt by the Ion-Exchange—Potentiometric Titration Method (2.0 % to 4.5 %)  53–60Cobalt by the Nitroso-R-Salt Spectrophotometric Method (0.01 % to 4.50 %)  61–70Copper by the Neocuproine Spectrophotometric Method (0.03 % to 7.5 %) 116–125Copper by the Sulfide Precipitation-Electrodeposition Gravimetric Method (0.03 % to 7.5 %)  81–88Lead by the Ion-Exchange—Atomic Absorption Spectrometry Method (0.001 % to 0.15 %) 126–135Magnesium by the Atomic Absorption Spectrometry Method (0.002 % to 0.10 %)  71–80Manganese by the Periodate Spectrophotometric Method (0.10 % to 2.00 %)   9–18Manganese by the Peroxydisulfate-Arsenite Titrimetric Method (0.10 % to 3.5 %) 152–159Molybdenum by the Ion Exchange–8-Hydroxyquinoline Gravimetric Method 257–264Molybdenum by the Thiocyanate Spectrophotometric Method (0.01 % to 1.5 %) 196–207Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 36.00 %) 168–175Nickel by the Ion Exchange-Atomic Absorption Spectrometry Method (0.005 % to 1.00 %) 176–185Phosphorus by the Alkalimetric Method (0.02 % to 0.90 %) 160–167Phosphorus by the Molybdenum Blue Spectrophotometric Method (0.02 % to 0.90 %)  19–30Silicon by the Gravimetric Method (0.1 % to 6.0 %)  46–52Sulfur by the Gravimetric Method—Discontinued 1988  30–36Sulfur by the Combustion-Iodate Titration Method (0.005 % to 0.25 %)—Discontinued 2012  37–45Sulfur by the Chromatographic Gravimetric Method—Discontinued 1980 136–143Tin by the Solvent Extraction-Atomic Absorption Spectrometry Method (0.002 % to 0.10 %)  186–195Tin by the Sulfide Precipitation-Iodometric Titration Method (0.01 % to 0.35 %)   89–96Titanium by the Diantipyrylmethane Spectrophotometric Method (0.006 % to 0.35 %)  246–256Vanadium by the Atomic Absorption Spectrometry Method (0.006 % to 0.15 %)  227–2361.3 Procedures for the determination of carbon and sulfur not included in these test methods can be found in Test Methods E1019.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single method and therefore this standard contains multiple methods for some elements. The user must select the proper method by matching the information given in the and Interference sections of each method with the composition of the alloy to be analyzed.1.5 The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these Methods.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

1.1 This guide covers recommendations for the use of chemical dispersants to assist in the control of oil spills. This guide is written with the goal of minimizing the environmental impacts of oil spills; this goal is the basis upon which recommendations are made. Aesthetic and socioeconomic factors are not considered, although these and other factors are often important in spill response. 1.2 Each on-scene coordinator has available several means of control or cleanup of spilled oil. In this guide, use of chemical dispersants is not considered as a last resort after other methods have failed. Chemical dispersants are to be given equal consideration with other spill countermeasures. 1.3 This is a general guide only assuming the oil to be dispersible and the dispersant to be effective, available, applied correctly and in compliance with relevant government regulations. Oil, as used in this guide, includes crude oils and fuel oils (No. 1 through No. 6). Differences between individual dispersants or between different oils or products are not considered. 1.4 This guide covers one type of habitat, salt marshes. Other guides, similar to this one, cover habitats such as rocky shores. The use of dispersants is considered primarily to protect such habitats from impact (or minimize impacts) and also to clean them after the spill takes place. 1.5 This guide applies to marine and estuarine environments, but not to freshwater environments. 1.6 In making dispersant-use decisions, appropriate government authorities should be consulted as required by law. 1.7 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 General—Hydrogen sulfide is nearly ubiquitous. It occurs naturally in volcanic gases, in sulfur springs and fumaroles, in decaying of plant and animal protein, and in intestines as a result of bacterial action. Hydrogen sulfide is a serious hazard to the health of workers employed in energy production from hydrocarbon or geothermal sources, in the production of fibers and sheets from viscose syrup, in the production of deuterium oxide (heavy water), in tanneries, sewers, sewage treatment and animal waste disposal, in work below ground, on fishing boats, and in chemical operations, including the gas and oil industry.5.2 In 29 CFR 1910.1000, the Federal Occupational Safety and Health Administration designates that worker exposure to certain gases and vapors must not be exceeded in workplace atmospheres at concentrations above specific values, averaged over a certain time span. Hydrogen sulfide is included in this list. Refer also to NIOSH Criteria for a Recommended Standard, Occupational Exposure to Hydrogen Sulfide.5.3 This practice will provide means for the determination of airborne concentrations of hydrogen sulfide.5.4 This practice provides means for either personal or area sampling and for short-term or time-weighted average (TWA) measurements. Refer to Threshold Limit Values for Chemical Substances in the Work Environment.1.1 This practice covers the detection of hydrogen sulfide gas by visual chemical detectors. Included under visual chemical detectors are: short-term detector tubes (1),2 long-term detector tubes (2), and length-of-stain dosimeters (3). Diffusion tubes are not included under this practice because they are not direct reading, and spot tests are not included because of their poor accuracy. The sample results are immediately available by visual observation, thus no analytical equipment is needed.1.2 This practice reflects the current state-of-the-art for commercially available visual length-of-stain detectors for hydrogen sulfide. Any mention of a specific manufacturer in the text or references does not constitute an endorsement by ASTM.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 The purpose of this terminology standard is to establish uniformity in terms used in the field of agricultural chemical application. Terms are adopted from related fields and where applicable from Terminology E609.1.2 The terms are appropriate to any agricultural chemical application. Units in parenthesis following a definition are meant as typical and are not exhaustive of all units available for the term.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications particularly those under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods cover the chemical analysis of tool steels and other similar medium- and high-alloy steels having chemical compositions within the following limits:Element Composition Range, %Aluminum   0.005 to 1.5Boron   0.001 to 0.10Carbon   0.03  to 2.50Chromium   0.10  to 14.0Cobalt   0.10  to 14.0Copper   0.01  to 2.0Lead   0.001 to 0.01Manganese   0.10  to 15.00Molybdenum   0.01  to 10.00Nickel   0.02  to 4.00Nitrogen   0.001 to 0.20Phosphorus   0.002 to 0.05Silicon   0.10  to 2.50Sulfur   0.002 to 0.40Tungsten   0.01  to 21.00Vanadium   0.02  to 5.501.2 The test methods in this standard are contained in the sections indicated below:    SectionsCarbon, Total, by the Combustion— Thermal Conductivity Method— Discontinued 1986   125–135Carbon, Total, by the Combustion Gravimetric Method—Discontinued 2012   78–88Chromium by the Atomic Absorption Spectrometry Method (0.006 % to 1.00 %) 174–183Chromium by the Peroxydisulfate Oxidation—Titration Method   (0.10 % to 14.00 %) 184–192Chromium by the Peroxydisulfate-Oxidation Titrimetric Method—Discontinued 1980   117–124Cobalt by the Ion-Exchange— Potentiometric Titration Method     (2 % to 14 %)  52–59Cobalt by the Nitroso-R-Salt  Spectrophotometric Method  (0.10 % to 5.0 %)  60–69Copper by the Neocuproine  Spectrophotometric Method  (0.01 % to 2.00 %) 89–98Copper by the Sulfide Precipitation- Electrodeposition Gravimetric Method   (0.01 % to 2.0 %)  70–77Lead by the Ion-Exchange—Atomic  Absorption Spectrometry Method (0.001 % to 0.01 %) 99–108Manganese by the Periodate  Spectrophotometric Method  (0.10 % to 5.00 %) 9–18Molybdenum by the Ion Exchange– 8-Hydroxyquinoline Gravimetric Method    203–210Molybdenum by the Thiocyanate Spectrophotometric Method  (0.01 % to 1.50 %) 162–173Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 4.0 %) 144–151Phosphorus by the Alkalimetric Method  (0.01 % to 0.05 %) 136–143Phosphorus by the Molybdenum Blue  Spectrophotometric Method (0.002 % to 0.05 %) 19–29Silicon by the Gravimetric Method  (0.10 % to 2.50 %) 45–51Sulfur by the Gravimetric Method—Discontinued 1988   29–35Sulfur by the Combustion-Iodate  Titration Method—Discontinued 2012   36–44Sulfur by the Chromatographic Gravimetric Method—Discontinued 1980   109–116Tin by the Solvent Extraction— Atomic Absorption Spectrometry Method (0.002 % to 0.10 %) 152–161Vanadium by the Atomic Absorption Spectrometry Method (0.006 % to 0.15 %) 193–2021.3 Test methods for the determination of carbon and sulfur not included in this standard can be found in Test Methods E1019.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single test method and therefore this standard contains multiple test methods for some elements. The user must select the proper test method by matching the information given in the and Interference sections of each test method with the composition of the alloy to be analyzed.1.5 The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these test methods.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This guide covers recommendations for the use of chemical dispersants to assist in the control of oil spills. This guide is written with the goal of minimizing the environmental impacts of oil spills; this goal is the basis upon which recommendations are made. Aesthetic and socioeconomic factors are not considered, although these and other factors are often important in spill response. 1.2 Each on-scene coordinator has available several means of control or cleanup of spilled oil. In this guide, use of chemical dispersants is not considered as a last resort after other methods have failed. Chemical dispersants are to be given equal consideration with other spill countermeasures. 1.3 This is a general guide only assuming the oil to be dispersible and the dispersant to be effective, available, applied correctly, and in compliance with relevant government regulations. Oil, as used in this guide, includes crude oils and fuel oils (No. 1 through No. 6). Differences between individual dispersants or between different oils or products are not considered. 1.4 This guide covers one type of habitat, bird environments. Other guides, similar to this one, cover habitats such as rocky shores. The use of dispersants is considered primarily to protect such habitats from impact (or minimize impacts) and also to clean them after the spill takes place. 1.5 This guide applies to marine and estuarine environments but not to freshwater environments. 1.6 In making dispersant-use decisions, appropriate government authorities should be consulted as required by law. 1.7 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications, particularly those under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods cover the chemical analysis of stainless, heat-resisting, maraging, and other similar chromium-nickel-iron alloys having chemical compositions within the following limits:   Element Composition Range, %  Aluminum   0.002 to  5.50  Boron   0.001 to  0.20  Carbon   0.01 to  1.50  Chromium   0.01 to 35.00  Cobalt   0.01 to 15.00  Niobium   0.01 to  4.00  Copper   0.01 to  5.00  Lead   0.001 to  0.50  Manganese   0.01 to 20.00  Molybdenum   0.01 to  7.00  Nickel   0.01 to 48.00  Nitrogen   0.001 to  0.50  Phosphorus   0.002 to  0.35  Selenium   0.01 to  0.50  Silicon   0.01 to  4.00  Sulfur   0.002 to  0.50  Tantalum   0.01 to  0.80  Tin   0.001 to  0.05  Titanium   0.01 to  4.50  Tungsten   0.01 to  4.50  Vanadium   0.005 to  1.00  Zirconium   0.001 to  0.201.2 The test methods in this standard are contained in the sections indicated below:  SectionsAluminum, Total, by the 8-Quinolinol Gravimetric Method (0.20 % to 7.00 %) 119–126Aluminum, Total, by the 8-Quinolinol Spectrophotometric Method (0.003 % to 0.20 %) 71–81Carbon, Total, by the Combustion–Thermal Conductivity Method–Discontinued 1986 153–163Carbon, Total, by the Combustion Gravimetric Method (0.05 % to 1.50 %)–Discontinued 2013 98–108Chromium by the Atomic Absorption Spectrometry Method (0.006 % to 1.00 %) 202–211Chromium by the Peroxydisulfate Oxidation–Titration Method (0.10 % to 35.00 %) 212–220Chromium by the Peroxydisulfate-Oxidation Titrimetric Method-Discontinued 1980 145–152Cobalt by the Ion-Exchange–Potentiometric Titration Method (2 % to 15 %) 53–60Cobalt by the Nitroso-R-Salt Spectrophotometric Method (0.01 % to 5.0 %) 61–70Copper by the Neocuproine Spectrophotometric Method (0.01 % to 5.00) %) 109–118Copper by the Sulfide Precipitation-Electrodeposition Gravimetric Method (0.01 % to 5.00 %) 82–89Lead by the Ion-Exchange-Atomic Absorption Spectrometry Method (0.001 % to 0.50 %) 127–136Manganese by the Periodate Spectrophotometric Method (0.01 % to 5.00 %) 9–18Molybdenum by the Ion Exchange–8-Hydroxyquinoline Gravimetric Method 242–249Molybdenum by the Thiocyanate Spectrophotometric Method (0.01 % to 1.50 %) 190–201Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 48.0 %) 172–179Phosphorus by the Alkalimetric Method (0.02 % to 0.35 %) 164–171Phosphorus by the Molybdenum Blue Spectrophotometric Method (0.002 % to 0.35 %) 19–30Silicon by the Gravimetric Method (0.05 % to 4.00 %) 46–52Sulfur by the Gravimetric Method-Discontinued 1988 30–36Sulfur by the Combustion-Iodate Titration Method (0.005 % to 0.5 %)-Discontinued 2014 37–45Sulfur by the Chromatographic Gravimetric Method-Discontinued 1980 137–144Tin by the Solvent Extraction–Atomic Absorption Spectrometry Method (0.002 % to 0.10 %) 180–189Tin by the Sulfide Precipitation-Iodometric Titration Method (0.01 % to 0.05 %) 90–97Titanium by the Diantipyrylmethane Spectrophotometric Method (0.01 % to 0.35 %) 231–241Vanadium by the Atomic Absorption Spectrometry Method (0.006 % to 0.15 %) 221–2301.3 Test methods for the determination of carbon and sulfur not included in this standard can be found in Test Methods E1019.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single test method and therefore this standard contains multiple test methods for some elements. The user must select the proper test method by matching the information given in the and Interference sections of each method with the composition of the alloy to be analyzed.1.5 The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these test methods.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended as referee methods to test such materials for compliance with compositional specifications, particularly those under the jurisdiction of the ASTM Committee A01 on Steel, Stainless Steel and Related Alloys. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory under appropriate quality control practices such as those described in Guide E882.1.1 These test methods cover the chemical analysis of high-temperature, electrical, magnetic, and other similar iron, nickel, and cobalt alloys having chemical compositions within the following limits:    Element Composition Range, %               Aluminum 0.005 to 18.00    Beryllium 0.001 to  0.05    Boron 0.001 to  1.00    Calcium 0.002 to   0.05    Carbon 0.001 to  1.10    Chromium 0.10  to 33.00    Cobalt 0.10  to 75.00    Columbium (Niobium) 0.01  to  6.0    Copper 0.01  to 10.00    Iron 0.01  to 85.00    Magnesium 0.001 to  0.05    Manganese 0.01  to  3.0    Molybdenum 0.01  to 30.0    Nickel 0.10  to 84.0    Nitrogen 0.001 to  0.20    Phosphorus 0.002 to  0.08    Silicon 0.01  to  5.00    Sulfur 0.002 to  0.10    Tantalum 0.005 to 10.0    Titanium 0.01  to  5.00    Tungsten 0.01  to 18.00    Vanadium 0.01  to  3.25    Zirconium 0.01  to  2.50  1.2 The test methods in this standard are contained in the sections indicated below:  Sections   Aluminum, Total, by the 8-Quinolinol Gravimetric Method (0.20 %   to 7.00 %) 100 – 107Carbon, Total, by the Combustion-Thermal Conductivity Method—Discontinued 1986 124 – 134Carbon, Total, by the Combustion Gravimetric Method (0.05 % to 1.10 %)—Discontinued 2014 79 – 89Chromium by the Atomic Absorption Spectrometry Method   (0.006 % to 1.00 %) 165 – 174Chromium by the Peroxydisulfate Oxidation—Titration Method (0.10 % to 33.00 %)  175 – 183Chromium by the Peroxydisulfate-Oxidation Titrimetric Method—   Discontinued 1980 116 – 123Cobalt by the Ion-Exchange-Potentiometric Titration Method (2 %   to 75 %)  53 – 60Cobalt by the Nitroso-R-Salt Spectrophotometric Method (0.10 %    to 5.0 %)  61 – 70Copper by Neocuproine Spectrophotometric Method (0.01 % to   10.00 %)  90 – 99Copper by the Sulfide Precipitation-Electrodeposition Gravimetric Method (0.01 % to 10.00 %)  71 – 78Iron by the Silver Reduction Titrimetric Method (1.0 % to 50.0 %) 192 –199Manganese by the Metaperiodate Spectrophotometric Method   (0.05 % to 2.00 %)  9 – 18Molybdenum by the Ion Exchange—8-Hydroxyquinoline Gravi- metric Method (1.5 % to 30 %) 184 – 191Molybdenum by the Thiocyanate Spectrophotometric Method   (0.01 % to 1.50 %) 153 – 164Nickel by the Dimethylglyoxime Gravimetric Method (0.1 % to 84.0 %) 135 – 142Phosphorus by the Molybdenum Blue Spectrophotometric Method   (0.002 % to 0.08 %) 19  – 30Silicon by the Gravimetric Method (0.05 % to 5.00 %) 46  – 52Sulfur by the Gravimetric Method—Discontinued   1988 Former 30  – 36Sulfur by the Combustion-Iodate Titration Method (0.005 % to 0.1 %)—Discontinued 2014 37  – 45Sulfur by the Chromatographic Gravimetric Method—Discontinued   1980 108 – 115Tin by the Solvent Extraction–Atomic Absorption Spectrometry   Method (0.002 % to 0.10 %) 143  – 1521.3 Methods for the determination of carbon and sulfur not included in this standard can be found in Test Methods E1019.1.4 Some of the composition ranges given in 1.1 are too broad to be covered by a single method and therefore this standard contains multiple methods for some elements. The user must select the proper method by matching the information given in the and Interference sections of each method with the composition of the alloy to be analyzed.1.5 Units—The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6 and in special “Warning” paragraphs throughout these test methods.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 There are limitations of the results obtained from these practices. The choice of types and concentrations of reagents, duration of immersion or stress, or both, level of stress, temperature of the test, and properties to be reported are necessarily arbitrary. The specification of these conditions provides a basis for standardization and serves as a guide to investigators wishing to compare the relative resistance of various plastics to chemical reagents.4.2 Correlation of test results with the actual performance or serviceability of plastics is necessarily dependent upon the similarity between the testing and the end-use conditions. For applications involving continuous immersion, the data obtained in short-time tests are of interest only in eliminating the most unsuitable materials or indicating a probable relative order of resistance to chemical reagents.4.3 Evaluation of plastics for special applications involving corrosive conditions shall be based upon the particular reagents and concentrations to be encountered. Base the selection of test conditions on the manner and duration of contact with reagents, the temperature of the system, applied stress, and other performance factors involved in the particular application.4.4 The practices present general guidelines without covering specifics on all the varied applications of plastics, such as use in automobiles and exposure to various automotive fluids, or use in hospital environments with exposure to disinfectants and cleaning fluids. These practices can be extended to such applications with specifics on the study conducted noted in the report.4.5 The use of appropriate controls is critical to evaluate the utility of the information generated by these practices. Particular attention should be given to the variability in the data generated, especially for the baseline controls, and issues in data generation reported to mitigate misuse of information.1.1 These practices cover the evaluation of all plastic materials including cast, hot-molded, cold-molded, laminated resinous products, and sheet materials for resistance to chemical reagents.1.2 Three procedures are presented, two under practice A (Immersion Test), and one under practice B (Mechanical Stress and Reagent Exposure under Standardized Conditions of Applied Strain). These practices include provisions for reporting changes in weight, dimensions, appearance, color, strength, and other mechanical properties. Standard reagents are specified to establish results on a comparable basis without precluding the use of other chemical reagents pertinent to specific chemical resistance requirements. Provisions are made for various exposure times, stress conditions, and exposure to reagents at elevated temperatures. The type of conditioning (immersion or wet patch/wipe method) depends upon the end-use of the material. If the material is used as a container or transfer line, immersion of the specimens is used. If the material will only see short exposures or will be used in proximity and reagent will splash or spill on the material, the wet patch or wipe method of applying reagent to the material is used.NOTE 1: Practice B for evaluating environmental stress cracking resistance differs from Practice D7474, which seeks to measure residual stresses in molded sulfone plastic parts with the use of calibrated chemical reagents. Practice B differs from Test Method D1693, which seeks to quantify the susceptibility of ethylene plastics to environmental stress-cracking subjected to specific conditions, by measuring the proportion of specimens that crack in a given time.1.3 The effect of chemical reagents on properties shall be determined by making measurements on standard specimens for such tests before and after immersion or stress, or both, if so tested.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7.NOTE 2: ISO 175 and ISO 22088 Part 3 address the same subject matter as Practices A and B of this standard, but differ in technical content and the results cannot be directly compared.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
262 条记录,每页 10 条,当前第 1 / 27 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页