微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This guide provides a list of the standards within Committee D04 that address the use of materials, specifications, and construction practices that could have broader sustainability benefits. This list is current, relative to the approval date of the standard.5.2 The standards discussed are listed in the Referenced Documents section.5.3 This guide is intended to be used as a reference for an owner, engineer, contractor, or combinations thereof, to identify potential sustainability strategies and the respective material and construction standards and specifications. It is important to note that these standards do not ensure sustainability goals are achieved; rather, they may be useful in determining inputs for sustainability metrics.1.1 This guide is intended to be a reference for locating specific test methods relating to materials and construction standards within the jurisdiction of Committee D04 on Road and Paving Materials that could be a strategy used to meet project sustainability goals.1.2 The guide needs to be reviewed and updated by Subcommittee D04.99 on Sustainable Asphalt Pavement Materials and Construction, on an as-needed basis, to remain viable.1.2.1 Additions or deletions to the reference list in Section 2 shall be submitted to Subcommittee D04.99 and balloted.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification deals with bare compact round stranded conductors made from uncoated copper wires of a single input wire diameter for general use in covered or insulated electrical wires or cables. Welds and brazes may be made in rods or in wires. The length and direction of lay are specified. The construction requirements of compact round single input wire-stranded copper conductors are also detailed. The mass and electrical resistance of the conductor shall be determined. Tests for the physical and electrical properties of wires shall be made.1.1 This specification covers bare compact round stranded conductors made from uncoated copper wires of a single input wire (SIW) diameter for general use in covered or insulated electrical wires or cables. These conductors shall be constructed with one or more layers of helically laid compacted wires (Explanatory Note 1, Note 2, and Note 3).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 For density, resistivity and temperature, the values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers compact round stranded aluminium conductors using single input wire construction. Joints may be made in any of the wires of any stranding by electric-butt welding, cold-pressure welding, or electric-butt, cold-upset welding. No joint or splice shall be made in a stranded conductor as a whole. The rated-strength and breaking-strength requirements of conductor are presented in details. Tests for the mechanical and electrical properties of wire composing the conductor shall be made before, but not after, stranding unless otherwise agreed upon by the manufacturer and the purchaser as provided by the reference materials.1.1 This specification covers aluminum/single input wire (SIW) stranded conductors made from round or shaped wires for use in covered or insulated electrical wires or cables. These conductors shall be composed of one or more roller or die compacted layers of helically applied wires (Explanatory Note 1, Explanatory Note 2, and Explanatory Note 3).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.NOTE 1: The aluminum and temper designations conform to ANSI H35.1. Aluminum 1350 and Aluminum-Alloy 8XXX correspond to Unified Numbering System A91350 and A98XXX, in accordance with Practice E527.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the performance-based and prescriptive-based methods of evaluating various classes of automated gate constructions that are used for vehicular traffic. The gate types addressed in this specification include horizontal slide gates, horizontal swing gates, vertical lift gates, vertical pivot gates, and overhead pivot gates. Conversely, the four classes of gates covered here are as follows: Class I, a gate for the garage or parking area intended for use in a home of a one-to-four single family dwelling; Class II, a gate intended for use in a commercial location or building such as a multi-family housing unit (five or more single family units), hotel, garages, retail store, or other building servicing the general public; Class III, a gate intended for use in an industrial location or building such as a factory, loading dock area, or other locations not intended to service the general public; and Class IV, a gate intended for use in a guarded industrial location or building such as an airport security area, or other restricted access locations not servicing the general public, in which unauthorized access is prevented by means of supervision by security personnel.1.1 This specification defines performance-based and prescriptive-based methods of evaluating various classes of gates that are used for vehicular traffic and are to be automated.1.2 Gate types addressed in this specification include horizontal slide gates, horizontal swing gates, vertical lift gates, vertical pivot gates, and overhead pivot gates.1.3 Gate types not listed in this specification will be subject to any applicable provisions contained in this specification.1.4 Automated vehicular gate systems shall comply with this specification and shall be compliant with UL 325.1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide outlines general installation procedures and precautions for the application of sodium bentonite needle-punched geotextile waterproofing systems.5.2 This guide is not all inclusive and is intended only to supplement detailed drawings and specifications from designers and the installation guidelines of manufacturers. Manufacturers of some of the systems addressed by this guide require proprietary products and special procedures not described in this guide. Manufacturers’ guidelines and details applicable for each site construction condition encountered on a project should therefore be considered in the application of this guide.1.1 This guide covers general installation guidelines of waterproofing membranes produced as a composite of sodium bentonite contained within two interlocked needle-punched geotextiles for designers to consider when developing project-specific drawings and specifications. This guide covers construction applications where the waterproofing is applied to the positive side of below-grade cast-in-place concrete foundation walls, both backfilled and support of excavation (SOE) construction, and under concrete pressure slabs. This guide does not cover plaza deck construction applications, either split-slab construction or pavers on pedestals, or vegetated green roof waterproofing applications.1.2 This guide does not cover sodium bentonite waterproofing membranes produced with a corrugation paper carrier, bentonite bonded to a geomembrane, and spray-applied bentonite systems.1.3 For the purpose of this guide, concrete is assumed to be cast-in-place with a surface profile as recommended in Guide D5295/D5295M, consolidated in accordance with applicable guidelines in ACI 309, structurally sound, able to accept the weight of anticipated loads, and meets the local building code requirements. All components of the waterproofing system are assumed to comply with any federal, state, and local environmental regulations that may be in effect at the time of installation. Expansion joints, insulation, and drainage layers are beyond the scope of this guide.1.4 This guide does not cover sodium bentonite geotextile membranes installed on below-grade foundation walls and slabs constructed with masonry materials, precast concrete, or pneumatically applied concrete (that is, shotcrete).1.5 The values stated in SI units are to be regarded as standard. The unit values given in parentheses are for reference information only.1.6 Different sodium bentonite geotextile membranes have different materials of composition and construction which can affect physical properties. The procedures contained in this guide, therefore, may not be universally applicable to all sodium bentonite geotextile membranes under all field conditions.1.7 This guide does not purport to assign responsibilities of quality assurance or quality control. Specific quality assurance and quality control items should be addressed in project specifications and contract documents.1.8 This guide does not purport to include requirements for warranties associated with the waterproofing materials or installation.1.9 This guide does not purport to include all detailing techniques to address various conditions that can be encountered on construction projects.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the density of construction slurries in the laboratory and field. For freshly mixed slurry, this test method may be used as an indicator of mix proportions. For in-trench slurry or in-borehole slurry, a certain value may be specified for maintaining trench or borehole stability.NOTE 1: The quality of the result produced by this standard depends on the competence of the personnel performing it and the suitability of the equipment and facilities being used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the density of slurries used in slurry construction techniques, such as those used to drill borings, maintain trench stability, perform ground improvement, and form hydraulic barriers. This test method is modified from API Recommended Practice 13B.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.2.1 Note that unitless specific gravity is equivalent to SI density in g/cm3.1.2.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This practice implicitly combines two separate systems of units; the absolute and the gravitational systems. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit of mass. However, the use of balances and scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.3.1 For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal of significant digits in the specified limit.1.3.2 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice provides basic criteria for the development and operation of a certification body, the development and operation of a certification program, and the development and use of customary mechanisms to evaluate a candidate’s knowledge, skill, and ability.4.2 The basic criteria provided by this practice are intended to be supplemented by more specific criteria serving the requirements of the certification body.4.3 The certification body and its program, accredited according to the requirements of ANSI/ISO/IEC 17024 and this practice, shall be considered as having met the full intent of this practice.1.1 This practice provides supplemental requirements to those of ANSI/ISO/IEC 17024 for bodies that certify personnel engaged in inspection and testing of construction activities and materials used in construction, including Special Inspection. ANSI/ISO/IEC 17024 provides generic requirements that can be adapted to any discipline where assurance that certified individual meets the requirements of the certification scheme. Therefore, certification bodies certifying personnel engaged in inspection and testing of construction activities and materials used in construction, including Special Inspection, must meet the requirements of this practice and ANSI/ISO/IEC 17024.1.2 This practice may be used as a reference by:1.2.1 Developers of standards requiring personnel certification in inspection and testing of construction activities and materials used in construction, including Special Inspection, as a reference to harmonize terminology and reduce confusion among users;1.2.2 Personnel certification bodies that establish criteria and certify construction inspection, construction testing, and Special Inspection agency personnel against specific requirements,1.2.3 Accreditation bodies that accredit certification bodies, and1.2.4 Users and specifiers as a reference when requiring personnel certification.1.3 This practice follows the format of ANSI/ISO/IEC 17024 and provides additional requirements where needed.1.4 Certification may be specific to a single test or inspection method or practice or a grouping or collection of methods or practices (any such method, code, or practice being hereinafter referred to as “method,” or collectively as “methods”).1.5 Personnel certification is an important aspect of the quality system of agencies engaged in inspection and testing of construction activities and materials used in construction, including Special Inspection. Certification of personnel is required to meet the personnel qualifications of Practice E329.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the percentage of sand by volume in construction slurry. The significance of this test method mainly relates to construction slurries used for concrete wall and drilled piers construction. The range of measurement is too limited for use in applications where the sand content is intended to be greater than 20 %, such as in the cases of cement bentonite or soil bentonite walls.5.2 A high sand content in the construction slurry is abrasive for construction plant such as pumps, and is furthermore adverse to the formation of a filter cake in applications where bentonite fluid is used to stabilize an excavation.NOTE 1: The quality of the result produced by this standard depends on the competence of the personnel performing it and the suitability of the equipment and facilities being used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the sand content of bentonitic slurries used in slurry construction techniques. This test method has been modified from API Recommended Practice 13B.1.2 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Except, the sieve designation is identified using the “alternative” system in accordance with Practice E11 instead of the “standard system,” such that the sieve used is referred to as a No. 200 sieve, instead of a 75 µm sieve.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The procedure described in this practice is used to design and construct an asphalt-rubber cape seal that will provide a wearing course when subjected to low to medium traffic volumes and where the pavement distress is due to block-type cracking resulting from pavement aging or reflective cracking only (not where there are clear indications of fatigue cracking due to repeated heavy axle loads).NOTE 2: Block cracking is defined in Practice D6433. See Appendix X1 for an example of block cracking due to aging.1.1 This practice covers asphalt-rubber cape seal, which is defined as the application of an asphalt-rubber seal coat placed onto an existing pavement surface, followed by the application of a conventional Type II or III slurry seal.NOTE 1: An asphalt-rubber seal coat is also known as a stress absorbing membrane (SAM), which consists of an asphalt-rubber membrane seal followed by the application of pre-coated aggregate chips.1.2 An asphalt-rubber cape seal is commonly used to extend the service life of low to medium trafficked and moderately distressed asphalt-surfaced pavements. The existing pavement condition can be used to determine the application rates for the asphalt-rubber binder and aggregate as well as the aggregate gradation. Pavements in relatively poor condition will require a coarser aggregate with a higher binder application rate.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification provides design and construction criteria for double and single fire and foam station cabinets. These cabinets are classified as Type I (single cabinet) and Type II (double cabinets). Type I cabinets are further subdivided into two grades: Grade 1 which has a right-hand door and Grade 2 with a left-hand door. Each of these grades has three classes according to material: Class A is made of mild steel, Class B with stainless steel, and Class C with aluminium. On the other hand, Type II cabinets have only one grade, Grade 1 with right-hand door active leaf. This grade is further classified into three classes: Class A, Class B, and Class C. The parts of these cabinets shall include: frame, hinge pad, hinge, brace, door, staple, hook, latch, keeper, rivet, clip, snubber, retainer, saddle, strap, clip, washer, back, leg, bolt, and back bar. Fire and foam cabinets shall be free of weld spatter, burrs, and sharp corners, rough edges, and other defects which might be hazardous to personnel and equipment.1.1 This specification provides design and construction criteria for double and single fire and foam station cabinets. See Fig. 1 and Fig. 2. Valves, hose, and fittings are not included.FIG. 1 Fire and Foam Cabinet—Type INOTE 1: 1 in. = 25.4 mm.FIG. 2 Fire and Foam Cabinet—Type II1.2 Optional back and legs may be provided.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
137 条记录,每页 10 条,当前第 1 / 14 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页