微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This guide provides a protocol for detecting, characterizing, and quantifying nucleic acids (that is, DNA) of living and recently dead microorganisms in fuels and fuel-associated waters by means of a culture independent qPCR procedure. Microbial contamination is inferred when elevated DNA levels are detected in comparison to the expected background DNA level of a clean fuel and fuel system.5.2 A sequence of protocol steps is required for successful qPCR testing.5.2.1 Quantitative detection of microorganisms depends on the DNA-extraction protocol and selection of appropriate oligonucleotide primers.5.2.2 The preferred DNA extraction protocol depends on the type of microorganism present in the sample and potential impurities that could interfere with the subsequent qPCR reaction.5.2.3 Primers vary in their specificity. Some 16S and 18S RNA gene regions present in the DNA of prokaryotic and eukaryotic microorganisms appear to have been conserved throughout evolution and thus provide a reliable and repeatable target for gene amplification and detection. Amplicons targeting these conserved nucleotide sequences are useful for quantifying total population densities. Other target DNA regions are specific to a metabolic class (for example, sulfate reducing bacteria) or individual taxon (for example, the bacterial species Pseudomonas aeruginosa). Primers targeting these unique nucleotide sequences are useful for detecting and quantifying specific microbes or groups of microbes known to be associated with biodeterioration.5.3 Just as the quantification of microorganisms using microbial growth media employs standardized formulations of growth conditions enabling the meaningful comparison of data from different laboratories (Practice D6974), this guide seeks to provide standardization to detect, characterize, and quantify nucleic acids associated with living and recently dead microorganisms in fuel-associated samples using qPCR.NOTE 3: Many primers, and primer and probe combinations that are not covered in this guide may be used to perform qPCR. This guide does not attempt to cover all of the possible qPCR assays and does not suggest nor imply that the qPCR assays (that is, combinations of primers and probes, and reaction conditions) discussed here are better suited for qPCR than other qPCR assays not presented here. Additional, primers, primers and probes combination, and qPCR assay conditions may be added in the future to this guide as they become available to the ASTM scientific community. Guide D6469 reviews the types of damage that uncontrolled microbial growth in fuels and fuel systems can cause.5.4 Culture-based microbiological tests depend on the ability of microbes to proliferate in liquid, solid or semisolid nutrient media, in order for microbes in a sample to be detected.5.5 There is general consensus among microbiologists that only a fraction of the microbes believed to be present in the environment have been cultured successfully.5.6 Since the mid-1990s, genetic test methods that do not rely on cultivation have been increasingly favored for the detection and quantification of microorganisms in environmental samples.5.7 qPCR is a quantitative, culture-independent method that is currently used in the medical, food, and cosmetic industries for the detection and quantification of microorganisms.5.8 Since the early 2000s, qPCR methodology has evolved and is now frequently used to quantify microorganisms in fuel-associated samples, but there is currently no standardized methodology for employing qPCR for this application (1-6).3 The purpose of this guide is to provide guidance and standardization for genetic testing of samples using qPCR to quantify total microbial populations present in fuel-associated samples.5.9 Although this guide focuses on describing recommended protocols for the quantification of total microorganisms present in fuel-associated samples using qPCR, the procedures described here can also be applied to the standardization of qPCR assays for other genetic targets and environmental matrices.5.10 Genetic techniques have great flexibility so that it is possible to design a nearly infinite number of methods to detect and quantify each and every gene. Because of this flexibility of genetic techniques, it is important to provide a standard protocol for qPCR so that data generated by different laboratories can be compared.5.11 This guide provides recommendations for primers sequences and experimental methodology for qPCR assays for the quantification of total microorganisms present in fuel-associated samples.1.1 This guide covers procedures for using quantitative polymerase chain reaction (qPCR), a genomic tool, to detect, characterize and quantify nucleic acids associated with microbial DNA present in liquid fuels and fuel-associated water samples.1.1.1 Water samples that may be used in testing include, but are not limited to, water associated with crude oil or liquid fuels in storage tanks, fuel tanks, or pipelines.1.1.2 While the intent of this guide is to focus on the analysis of fuel-associated samples, the procedures described here are also relevant to the analysis of water used in hydrotesting of pipes and equipment, water injected into geological formations to maintain pressure and/or facilitate the recovery of hydrocarbons in oil and gas recovery, water co-produced during the production of oil and gas, water in fire protection sprinkler systems, potable water, industrial process water, and wastewater.1.1.3 To test a fuel sample, the live and recently dead microorganisms must be separated from the fuel phase which can include any DNA fragments by using one of various methods such as filtration or any other microbial capturing methods.1.1.4 Some of the protocol steps are universally required and are indicated by the use of the word must. Other protocol steps are testing-objective dependent. At those process steps, options are offered and the basis for choosing among them are explained.1.2 The guide describes the application of quantitative polymerase chain reaction (qPCR) technology to determine total bioburden or total microbial population present in fuel-associated samples using universal primers that allow for the quantification of 16S and 18S ribosomal RNA genes that are present in all prokaryotes (that is, bacteria and archaea) and eucaryotes (that is, mold and yeast collectively termed fungi), respectively.1.3 This guide describes laboratory protocols. As described in Practice D7464, the qualitative and quantitative relationship between the laboratory results and actual microbial communities in the systems from which samples are collected is affected by the time delay and handling conditions between the time of sampling and time that testing is initiated.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard with the exception of the concept unit of gene copies/mL (that is, 16S or 18S gene copies/mL) to indicate the starting concentration of microbial DNA for the intended microbial targets (that is, bacteria, archaea, fungi).1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers requirements and test methods for flexible annular, corrugated profile wall polyethylene pipe with an interior liner. It covers nominal sizes 3 in. (75 mm), 4 in. (100 mm), 5 in. (125 mm), 6 in. (150 mm), 8 in. (200 mm), 10 in. (250 mm), 12 in. (300 mm), 15 in. (375 mm), 18 in (450 mm), and 24 in (600 mm).1.2 The requirements of this specification are intended to provide non-pressure (gravity flow) lined flexible annular corrugated polyethylene pipe for subsurface and land drainage systems, such as agricultural or foundations, which do not operate under surcharge pressure heads.NOTE 1: Pipe produced in accordance with this specification is to be installed in compliance with Practice F449. Lined flexible annular corrugated polyethylene provides axial flexibility allowing for subsurface installation using tile plows and allows the pipe to be coiled for storage and transport.NOTE 2: Subsurface and land drainage systems pertain principally to agricultural applications for water table control.NOTE 3: Lined flexible pipe provided in coiled lengths will experience distortion or folding in the interior pipe liner which may adversely affect flow characteristics, contact the pipe manufacturer for hydraulic design guidance for the coiled lined flexible pipe.1.3 This specification permits the use of recycled materials for pipe in accordance with the requirements in Section 5.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Use of this guide is intended to provide information on the galvanic corrosion of metals in electrical contact in an electrolyte that does not have a flow velocity sufficient to cause erosion-corrosion or cavitation.3.2 This standard is presented as a guide for conducting galvanic corrosion tests in liquid electrolyte solutions, both in the laboratory and in service environments. Adherence to this guide will aid in avoiding some of the inherent difficulties in such testing.1.1 This guide covers conducting and evaluating galvanic corrosion tests to characterize the behavior of two dissimilar metals in electrical contact in an electrolyte under low-flow conditions. It can be adapted to wrought or cast metals and alloys.1.2 This guide covers the selection of materials, specimen preparation, test environment, method of exposure, and method for evaluating the results to characterize the behavior of galvanic couples in an electrolyte.NOTE 1: Additional information on galvanic corrosion testing and examples of the conduct and evaluation of galvanic corrosion tests in electrolytes are given in Refs (1)2 through (2).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers high calcium, dolomitic and magnesian-hydrated lime for use in asphalt cement or bituminous pavements. Hydrated lime, either dry or slurry form, shall conform to the chemical composition requirements for calcium and magnesium oxides, carbon dioxide, unhydrated calcium and magnesium oxides, and free moisture of dry hydrates as shall be determined by chemical analysis. The particle size of hydrated lime shall also be determined using a standardized spray nozzle and pressure gauge.1.1 This specification covers high calcium, dolomitic and magnesian-hydrated lime for use in asphalt cement or bituminous paving mixtures.NOTE 1: Hydrated lime, either calcitic, dolomitic, or magnesian, improves bonding of bitumen and aggregates which reduces susceptibility to moisture damage, reduces age hardening by chemically stabilizing polar compounds found in asphalts, and increases initial stiffness of asphalt mixtures.NOTE 2: No attempt is made to present requirements for any by-product lime.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Mechanical drive systems operability and long-term integrity are concerns that should be addressed primarily during the design phase; however, problems identified during fabrication and testing should be resolved and the changes in the design documented. Equipment operability and integrity can be compromised during handling and installation sequences. For this reason, the subject equipment should be handled and installed under closely controlled and supervised conditions.4.2 This standard is intended as a supplement to other standards, and to federal and state regulations, codes, and criteria applicable to the design of equipment intended for this use.4.3 This standard is intended to be generic and to apply to a wide range of types and configurations of mechanical drive systems.1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion.1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions:1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment.1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded.1.2.1.3 The equipment can neither be accessed directly for purposes of operation or maintenance, nor can the equipment be viewed directly, for example, without radiation shielding windows, periscopes, or a video monitoring system (Guides C1572 and C1661).1.2.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 User Caveats: 1.3.1 This standard is not a substitute for applied engineering skills, proven practices and experience. Its purpose is to provide guidance.1.3.1.1 The guidance set forth in this standard relating to design of equipment is intended only to alert designers and engineers to those features, conditions, and procedures that have been found necessary or highly desirable to the design, selection, operation and maintenance of mechanical drive systems for the subject service conditions.1.3.1.2 The guidance set forth results from discoveries of conditions, practices, features, or lack of features that were found to be sources of operational or maintenance problems, or causes of failure.1.3.2 This standard does not supersede federal or state regulations, or both, and codes applicable to equipment under any conditions.1.3.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Stress may be applied intentionally through a heat treatment or tempering process to increase mechanical strength and improve safety characteristics of glass sheets. The process itself makes it practically impossible to achieve a homogenous residual stress profile over a full glass panel. These variations are due to variations in type of glass (clear, tinted, coated, etc.), the fabrication, sheet geometry, heating, quenching, and cooling. Even though the level of inhomogeneity may not interfere with the global mechanical property of the glass sample, it can produce optical patterns called anisotropy (often commonly referred to as leopard spots). Today to evaluate this stress homogeneity people may use the subjective, non-standardized method of viewing through a polarized filter or employing a polariscope. The present test method provides guidelines for measuring a physical parameter, the optical retardation, directly linked to the local residual stress, at many locations on each heat-treated glass sheet.5.2 Through this test method one can obtain in a non-destructive manner, on-line to the tempering furnace equipment, a map of the retardation value of all glasses. That information can then be used:5.2.1 By the tempering operator to adjust the settings of the heat treatment process to optimize/tune both the levels optical retardations and its homogeneity on heat treated glass sheets.5.2.2 To provide a standardized way to measure optical retardation values for each glass panel that can be archived and communicated when desired.5.2.3 By customers and other stakeholders to develop/write specifications for the optical retardation values (not the visibility of the pattern) that are independently verifiable.5.3 This test method can also be used off-line to evaluate the optical retardation level and homogeneity of any heat-treated glass, for quality assurance or other purposes.1.1 This test method addresses the measurement of optical anisotropy in architectural glass.1.2 This test method is a test method for measuring optical retardation. It is not an architectural glazing specification.1.3 The optical retardation values may be used to calculate/predict the amount of visible pattern, commonly known as anisotropy or iridescence, present in heat-treated glass.1.4 This test method applies to monolithic heat-treated (heat-strengthened and fully tempered) clear, tinted and coated glass.1.5 This test method does not apply to:1.5.1 Glass that diffuse light (that is, patterned glass, sand blasted glass, acid etched, etc.), or1.5.2 Glass that is not optically transparent (that is, mirrors, enameled or fritted glass).1.6 The optical measurement is integrated through the glass thickness, and therefore cannot be used to assess the level of tempering. It does not give information on the surface stress or center tension.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Liquefied petroleum gases and their products of combustion must not be unduly corrosive to the materials with which they come in contact. The potential personnel exposure hazards of H2S also make the detection and measurement of hydrogen sulfide important, even in low concentrations. In addition, in some cases the odor of the gases shall not be objectionable. (See Specification D1835 and GPA 2140.)1.1 This test method2 covers the detection of hydrogen sulfide in liquefied petroleum (LP) gases. The sensitivity of the test is about 4 mg/m3 (0.15 to 0.2 grain of hydrogen sulfide per 100 ft3) of gas.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Moisture as determined by this test method is used for calculating other analytical results to a moisture free basis using procedures in Practice D3180. Moisture percent determined by this test method may be used in conjunction with the air-dry moisture loss determined in Method D2013 and Test Method D3302 to determine total moisture in coal. Total moisture is used for calculating other analytical results to “as received” basis using Practice D3180. Moisture, ash, volatile matter, and fixed carbon percents constitute the proximate analysis of coal and coke.1.1 This test method covers the determination of moisture in the analysis sample of coal or coke. It is used for calculating other analytical results to a dry basis. When used in conjunction with the air drying loss as determined in accordance with Method D2013 or Practice D346, each analytical result can be calculated to an as-received basis:1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.5.2 This test method is adopted from earlier development and enhancement.4,5,6,7 The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).5.3 Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.5.4 If water is or is suspected of being present, its concentration is determined by the use of Test Method D1744. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D4815 and D5599 for oxygenates, Test Method D5580 for aromatics, and Test Method D5623 for sulfur compounds.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range from 0.01 % to approximately 30 % by mass. The test method may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the test method is used for components with concentrations outside the specified ranges.1.3 This test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range from 1 % to 30 % by mass. However, the cooperative study data provided insufficient statistical data for obtaining a precision statement for these compounds.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA-type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this test method is applicable to samples containing less than 25 % by mass of olefins. However, some interfering co-elution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Annex A1 of this test method compares results of the test method with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toulene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using the specific test methods listed in the reference section.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent by volume) or other test methods, such as those based on multidimentional PONA-type of instruments.1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744 or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and Test Method D5623 for sulfur compounds, or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 In general, wherever the possibility exists of water getting mixed with products/material (covered under 1.1) the results obtained by this test method will indicate the degree to which corrosion of iron components can be expected.5.2 Test also determines the antirust properties of products/material (covered under 1.1) in preparation for the various stages through which the tested product may pass prior to or during its transport through a pipeline.5.3 Test results are also meant to show whether or not the dosage levels and type of iron corrosion inhibitor added to a product/material (covered under 1.1) is sufficient for achieving the desired protection of affected assets such as storage tanks, process lines, and shipment systems.1.1 This test method covers an accelerated laboratory and field procedure for the determination of corrosion of iron, in the presence of water, on samples such as gasoline and gasoline blended with 10 % ethanol, E10 (Specification D4814); gasoline-blend components (except butane); diesel fuel and biodiesel B5, except Grade No. 4-D (Specification D975); biodiesel B6 to B20 (Specification D7467); diesel-blend component such as light cycle-oil; No. 1 fuel oil, No. 2 fuel oil (Specification D396); aviation turbine fuel (Specification D1655).1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—Values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method for the chemical analysis of metals and alloys is primarily intended to test such materials for compliance with compositional specifications. It is assumed that all who use these test methods will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory.1.1 This test method describes the determination of beryllium in copper-beryllium alloys in percentages from 0.1 % to 3.0 % by phosphate gravimetry.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 9.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the minimum requirements for the pressure-temperature rating, testing, and making of pressure-containing vessels for entrainment separators. Entrainment separators covered in this specification shall be designed according to the lowest pressure-temperature rating of any individual component, or as established by proof tests. Test water temperature and entrainment separator temperature must be at equilibrium before hydrostatic test pressure is applied. All possible air pockets must be purged while the entrainment separator vessel is being filled with water. External equipment not to be pressurized with the entrainment separator should be isolated or disconnected before applying the hydrostatic test pressure. Hydrostatic test pressure shall be applied gradually to the entrainment separator and held stationary at each increment for a sufficient time in order that a visual inspection can be made for leaks or deformation of the vessel.1.1 This specification covers the minimum requirements for the pressure-temperature rating, testing, and making of pressure-containing vessels for entrainment separators.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazards caveat pertains only to the test methods portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is for use by designers and specifiers, regulatory agencies, owners, contractors, and inspection organizations who are involved in rehabilitation of pressurized piping systems.1.1 This standard is intended to establish the minimum criteria necessary for use of a mechanically mixed, blended, epoxy barrier coating (AWWA Class I) that is applied to the interior of 1/2 in. (12.7 mm) to 36 in. (914.4 mm) metallic pipe or tube used in pressurized piping systems for corrosion protection and to improve flow rates. There is no restriction as to the developed length of the piping system other than the method of application (“blow through”, spin cast or hand sprayed) and the characteristics of the epoxy coating being applied but the manufacturer’s engineer shall be consulted for any limitations associated with this product, process and its application for the end user.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 An accurate measure of the total absorbed dose is necessary to ensure the validity of the data taken, to enable comparison to be made of data taken at different facilities, and to verify that components or circuits are tested to the radiation specification applied to the system for which they are to be used.5.2 The primary value of a calorimetric method for measuring dose is that the results are absolute. They are based only on physical properties of materials, that is, the specific heat of the calorimeter-block material and the Seebeck EMF of the thermocouple used or the temperature coefficient of resistance (α) of the thermistor used, all of which can be established with non-radiation measurements.5.3 The method permits repeated measurements to be made without requiring entry into the radiation cell between measurements.1.1 This test method covers a calorimetric measurement of the total absorbed dose delivered by a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode). The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are “thin” compared to the range of these electrons in the materials of which they are constructed.1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy(matl)2 [500 rd (matl)] or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. The units for the total absorbed dose delivered to a material require the specification of the material and the notation “matl” refers to the active material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity, and the thermal time constant of the calorimeter.1.3 A determination of the total dose is made directly for the material of which the calorimeter block is made. The total dose in other materials can be calculated from this measured value using Eq 3 presented in this test method. The need for such calculations and the choice of materials for which calculations are to be made shall be subject to agreement by the parties to the test.1.4 The values stated in SI units are to be regarded as the standard. The values in parenthesis are provided for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Most organic liquids and solids will ignite in a pressurized oxidizing gas atmosphere if heated to a sufficiently high temperature and pressure. This procedure provides a numerical value for the temperature at the onset of ignition under carefully controlled conditions. Means for extrapolation from this idealized situation to the description, appraisal, or regulation of fire and explosion hazards in specific field situations, are not established. Ranking of the ignition temperatures of several materials in the standard apparatus is generally in conformity with field experience.4.2 The temperature at which material will ignite spontaneously (AIT) will vary greatly with the geometry of the test system and the rate of heating. To achieve good interlaboratory agreement of ignition temperatures, it is necessary to use equipment of approximately the dimensions described in the test method. It is also necessary to follow the described procedure as closely as possible.4.3 The decomposition and oxidation of some fully fluorinated materials releases so little energy that there is no clear-cut indication of ignition. Nor will there be a clear indication of ignition if a sample volatilizes, distilling to another part of the reaction vessel, before reaching ignition temperature.1.1 This test method covers the determination of the temperature at which liquids and solids will spontaneously ignite. These materials must ignite without application of spark or flame in a high-pressure oxygen-enriched environment.1.2 This test method is intended for use at pressures of 2.1 MPa to 20.7 MPa [300 psi to 3000 psi]. The pressure used in the description of the method is 10.3 MPa [1500 psi], and is intended for applicability to high pressure conditions. The test method, as described, is for liquids or solids with ignition temperature in the range from 60 °C to 500 °C [140 °F to 932 °F].NOTE 1: Test Method G72/G72M normally utilizes samples of approximately 0.20 ± 0.03-g mass, a starting pressure of 10.3 MPa [1500 psi] and a temperature ramp rate of 5 °C/min. However, Autogenous Ignition Temperatures (AIT) can also be obtained under other test conditions. Testing experience has shown that AIT testing of volatile liquids can be influenced by the sample pre-conditioning and the sample mass. This will be addressed in the standard as Special Case 1 in subsection 8.2.2. Testing experience has also shown that AIT testing of solid or non-volatile liquid materials at low pressures (that is, < 2.1 MPa) can be significantly influenced by the sample mass and the temperature ramp rate. This will be addressed in the standard as Special Case 2, in subsection 8.2.3. Since the AIT of a material is dependent on the sample mass/configuration and test conditions, any departure from the standard conditions normally used for Test Method G72/G72M testing should be clearly indicated in the test report.1.3 This test method is for high-pressure pure oxygen. The test method may be used in atmospheres from 0.5 % to 100 % oxygen.1.4 An apparatus suitable for these requirements is described. This test method could be applied to higher pressures and materials of higher ignition temperature. If more severe requirements or other oxidizers than those described are desired, care must be taken in selecting an alternative safe apparatus capable of withstanding the conditions.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
2922 条记录,每页 15 条,当前第 1 / 195 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页