微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers the establishment of the minimum requirements for the design, testing, and quality assurance of fixed-pitch or ground adjustable propellers for light sport aircraft. The propeller may not have design features that have been shown to be hazardous or unreliable unless the suitability of each questionable design detail or part can be established by tests. Strength testing; stress measurement, fatigue strength, and fatigue analysis, endurance testing, and teardown inspection shall be performed to meet the requirements prescribed.1.1 This specification covers the establishment of the minimum requirements for the design, testing, and quality assurance of fixed-pitch or ground adjustable propellers for light sport aircraft. These propellers are used on light aircraft, and could be used with engines conforming to Practice F2339.1.1.1 When applying the additions provided in Appendix X1, this specification also covers the establishment of the minimum requirements for the design, testing and quality assurance of in-flight adjustable propellers for light-sport aircraft.1.2 This specification is intended for use by manufacturers of propellers for light sport aircraft.1.3 This specification does not address the airframe installation requirements for propellers.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 From the light ship characteristics one is able to calculate the stability characteristics of the vessel for all conditions of loading and thereby determine whether the vessel satisfies the applicable stability criteria. Accurate results from a stability test may in some cases determine the future survival of the vessel and its crew, so the accuracy with which the test is conducted cannot be overemphasized. The condition of the vessel and the environment during the test is rarely ideal and consequently, the stability test is infrequently conducted exactly as planned. If the vessel is not 100 % complete and the weather is not perfect, there ends up being water or shipyard trash in a tank that was supposed to be clean and dry and so forth, then the person in charge must make immediate decisions as to the acceptability of variances from the plan. A complete understanding of the principles behind the stability test and a knowledge of the factors that affect the results is necessary.1.1 This guide covers the determination of a vessel’s light ship characteristics. In this standard, a vessel is a traditional hull-formed vessel. The stability test can be considered to be two separate tasks; the lightweight survey and the inclining experiment. The stability test is required for most vessels upon their completion and after major conversions. It is normally conducted inshore in calm weather conditions and usually requires the vessel be taken out of service to prepare for and conduct the stability test. The three light ship characteristics determined from the stability test for conventional (symmetrical) ships are displacement (“displ”), longitudinal center of gravity (“LCG”), and the vertical center of gravity (“KG”). The transverse center of gravity (“TCG”) may also be determined for mobile offshore drilling units (MODUs) and other vessels which are asymmetrical about the centerline or whose internal arrangement or outfitting is such that an inherent list may develop from off-center weight. Because of their nature, other special considerations not specifically addressed in this guide may be necessary for some MODUs. This standard is not applicable to vessels such as a tension-leg platforms, semi-submersibles, rigid hull inflatable boats, and so on.1.2 The limitations of 1 % trim or 4 % heel and so on apply if one is using the traditional pre-defined hydrostatic characteristics. This is due to the drastic change of waterplane area. If one is calculating hydrostatic characteristics at each move, such as utilizing a computer program, then the limitations are not applicable.1.3 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exceptions—Other units may be used for the stability test, but the test results should be reported in the same units and coordinate system as the vessel’s draft marks and Trim and Stability Book or similar stability information provided.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 Master Matrix—This matrix document is written as a reference and guide to the use of existing standards and to help manage the development and application of new standards, as needed for LWR-PV surveillance programs. Paragraphs 4.2 – 4.5 are provided to assist the authors and users involved in the preparation, revision, and application of these standards (see Section 6).4.2 Approach and Primary Objectives: 4.2.1 Standardized procedures and reference data are recommended in regard to (1) neutron and gamma dosimetry, (2) physics (neutronics and gamma effects), and (3) metallurgical damage correlation methods and data, associated with the analysis, interpretation, and use of nuclear reactor test and surveillance results.4.2.2 Existing state-of-the-art practices associated with (1), (2), and (3), if uniformly and consistently applied, can provide reliable (10 to 30 %, 1σ) estimates of changes in LWR-PV steel fracture toughness during a reactor’s service life (36).4.2.3 Reg. Guide 1.99 and Section III of the ASME Boiler and Pressure Vessel Code, Part NF2121 require that the materials used in reactor pressure vessels support “...shall be made of materials that are not injuriously affected by ... irradiation conditions to which the item will be subjected.”4.2.4 By the use of this series of standards and the uniform and consistent documentation and reporting of estimated changes in LWR-PV steel fracture toughness with uncertainties of 10 to 30 % (1σ), the nuclear industry and licensing and regulatory agencies can meet realistic LWR power plant operating conditions and limits, such as those defined in Appendices G and H of 10 CFR Part 50, Reg. Guide 1.99, and the ASME Boiler and Pressure Vessel Code.4.2.5 The uniform and consistent application of this series of standards allows the nuclear industry and licensing and regulatory agencies to properly administer their responsibilities in regard to the toughness of LWR power reactor materials to meet requirements of Appendices G and H of 10 CFR Part 50, Reg. Guide 1.99, and the ASME Boiler and Pressure Vessel Code.4.3 Dosimetry Analysis and Interpretation (1, 3-5, 21, 28, 29, 35, 37, 38)—When properly implemented, validated, and calibrated by vendor/utility groups, state-of-the-art dosimetry practices exist that are adequate for existing and future LWR power plant surveillance programs. The uncertainties and errors associated with the individual and combined effects of the different variables (items 1.4.1 – 1.4.10 of 1.4) are considered in this section and in 4.4 and 4.5. In these sections, the accuracy (uncertainty and error) statements that are made are quantitative and representative of state-of-the-art technology. Their correctness and use for making EOL predictions for any given LWR power plant, however, are dependent on such factors as (1) the existing plant surveillance program, (2) the plant geometrical configuration, and (3) available surveillance results from similar plants. As emphasized in Section III-A of Ref (7), however, these effects are not unique and are dependent on (1) the surveillance capsule design, (2) the configuration of the reactor core and internals, and (3) the location of the surveillance capsule within the reactor geometry. Further, the statement that a result could be in error is dependent on how the neutron and gamma ray fields are estimated for a given reactor power plant (1, 11, 28, 36, 39, 40). For most of the error statements in 4.3 – 4.5, it is assumed that these estimates are based on reactor transport theory calculations that have been normalized to the core power history (see 4.4.1.2) and not to surveillance capsule dosimetry results. The 4.3 – 4.5 accuracy statements, consequently, are intended for use in helping the standards writer and user to determine the relative importance of the different variables in regard to the application of the set of ASTM standards, Fig. 1, for (1) LWR-PV surveillance program, (2) as instruments of licensing and regulation, and (3) for establishing improved metallurgical databases.4.3.1 Required Accuracies and Benchmark Field Referencing: 4.3.1.1 The accuracies (uncertainties and errors) (Note 1) desirable for LWR-PV steel exposure definition are of the order of ±10 to 15 % (1σ) while exposure accuracies in establishing trend curves should preferably not exceed ±10 % (1σ) (1, 11, 21, 36, 40-46). In order to achieve such goals, the response of neutron dosimeters should therefore also be interpretable to accuracies within ±10 to 15 % (1σ) in terms of exposure units and be measurable to within ±5 % (1σ).NOTE 1: Uncertainty in the sense treated here is a scientific characterization of the reliability of a measurement result and its statement is the necessary premise for using these results for applied investigations claiming high or at least stated accuracy. The term error will be reserved to denote a known deviation of the result from the quantity to be measured. Errors are usually taken into account by corrections.4.3.1.2 Dosimetry “inventories” should be established in support of the above for use by vendor/utility groups and research and development organizations.4.3.1.3 Benchmark field referencing of research and utilities’ vendor/service laboratories has been completed that is:(1) Needed for quality control and certification of current and improved dosimetry practices; and(2) Extensively applied in standard and reference neutron fields, PCA, PSF, SDMF, VENUS, NESDIP, PWRs, BWRs (1), and a number of test reactors to quantify and minimize uncertainties and errors.4.3.2 Status of Benchmark Field Referencing Work for Dosimetry Detectors—PCA, VENUS, NESDIP experiments with and without simulated surveillance capsules and power reactor tests have provided data for studying the effect of deficiencies in analysis and interpretations; the PCA/PSF/SDMF perturbation experiments have provided data for more realistic PWR and BWR power plant surveillance capsule configurations and have permitted utilities’ vendor/service laboratories to test, validate, calibrate, and update their practices (1, 4, 5, 47). The PSF surveillance capsule test provided data, but of a more one-dimensional nature. PCA, VENUS, and NESDIP experimentation together with some test reactor work augmented the benchmark field quantification of these effects (1, 3, 4, 28, 36, 48-51).4.3.3 Additional Validation Work for Dosimetry Detectors: 4.3.3.1 Establishment of nuclear data, photo-reaction cross sections, and neutron damage reference files.4.3.3.2 Establishment of proper quality assurance procedures for sensor set designs and individual detectors.4.3.3.3 Interlaboratory comparisons using standard and reference neutron fields and other test reactors that provide adequate validations and calibrations, see Guide E2005.4.4 Reactor Physics Analysis and Interpretation (1, 3, 5, 11, 28, 35, 36, 39, 52)—When properly implemented, validated, and calibrated by vendor/utility groups, state-of-the-art reactor physics practices exist that are adequate for in- and ex-vessel estimates of PV-steel changes in fracture toughness for existing and future power plant surveillance programs.4.4.1 Required Accuracies and Benchmark Field Referencing: 4.4.1.1 The accuracies desirable for LWR-PV steel (surveillance capsule specimens and vessels) exposure definition are of the order of ±10 to 15 % (1σ). Under ideal conditions benchmarking computational techniques are capable of predicting absolute in- and ex-vessel neutron exposures and reaction rates per unit reactor core power to within ±15 % (but generally not to within ±5 %). The accuracy will be worse, however, in applications to actual power plants because of geometrical and other complexities (1, 3, 4, 11, 21, 36-39, 52).4.4.1.2 Calculated in-and ex-vessel neutron and gamma ray fields can be normalized to the core power history or to experimental measurements. The latter may include dosimetry from surveillance capsules, other in-vessel locations, or ex-vessel measurements in the cavity outside the vessel. In each case, the uncertainty arising from the calculation needs to be considered.4.4.2 Power Plant Reactor Physics Analysis and Interpretation: 4.4.2.1 Result of Neglect of Benchmarking—One quarter thickness location (1/4T) vessel wall estimates of damage exposure are not easily compared with experimental results. “Lead factors,” based on the different ways they can be calculated (fluence >0.1 or >1.0 MeV and dpa) may not always be conservative; that is, some surveillance capsules have been positioned in-vessel such that the actual lead factor is very near unity—no lead at all. Also the differences between lead factors based on fluence E > 0.1 or > 1 MeV and dpa can be significant, perhaps 50 % or more (1, 11, 21, 28, 36-38, 52).4.4.3 PCA, VENUS, and NESDIP Experiments and PCA Blind Test: 4.4.3.1 Test of transport theory methods under clean geometry and clean core source conditions shall be made (1, 4, 11, 52).4.4.3.2 This is a necessary but not sufficient benchmark test of the adequacy of a vendor/utility group’s power reactor physics computational tools.4.4.3.3 The standard recommendation should be that the vendor/utility group’s observed differences between their own calculated and the PCA, VENUS, and NESDIP measured integral and differential exposure and reaction rate parameters be used to validate and improve their calculational tools (if the differences fall outside the PCA, VENUS, and NESDIP experimental accuracy limits).4.4.4 PWR and BWR Generic Power Reactor Tests: 4.4.4.1 Test of transport theory methods under actual geometry and variable core source conditions (1, 3, 4, 28, 35, 36, 53).4.4.4.2 This is a necessary and partly sufficient benchmark test of the adequacy of a vendor/utility group’s power reactor physics computational tools.4.4.4.3 The standard recommendation should be that the vendor/utility group’s observed differences between their own calculated and the selected PWR or BWR measured integral and differential exposure and reaction rate parameters be used to validate and improve their calculation tools (if the differences fall outside of the selected PWR or BWR experimental accuracy limits).4.4.4.4 The power reactor “benchmarks” that have been established for this purpose are identified and discussed in Refs (1, 3, 4, 35, 53) and their references and in Guide E2006.4.4.5 Operating Power Reactor Tests: 4.4.5.1 This is a necessary test of transport theory methods under actual geometry and variable core source conditions, but for a particular type or class of vendor/utility group power reactors. Here, actual in-vessel surveillance capsule and any required ex-vessel measured dosimetry information will be utilized as in 4.4.4 (1, 3, 4, 28, 35, 36, 53). Note, however, that operating power reactor tests are not sufficient by themselves (Reg. Guide 1.190, Section 4.4.5.1).4.4.5.2 Accuracies associated with surveillance program reported values of exposures and reaction rates are expected to be in the 10 to 30 % (1σ) range (36).4.5 Metallurgical Damage Correlation Analysis and Interpretation (1-8, 10, 11, 13, 15-29, 36-38)—When properly implemented, validated, and calibrated by vendor/utility groups, state-of-the-art metallurgical damage correlation practices exist that are adequate for in- and ex-vessel estimates of PV-steel changes in fracture toughness for existing and future power plant surveillance programs.4.5.1 Required Accuracies and Benchmark Field Referencing: 4.5.1.1 The accuracies desirable and achievable for LWR-PV steel (test reactor specimens, surveillance capsule specimens, and vessels and support structure) data correlation and data extrapolation (to predict fracture toughness changes both in space and time) are of the order of ±10 to 30 % (1σ). In order to achieve such a goal, however, the metallurgical parameters (ΔNDTT, upper shelf, yield strength, etc.) must be interpretable to well within ±20 to 30 % (1σ). This mandates that in addition to the dosimetry and physics variables already discussed that the individual uncertainties and errors associated with a number of other variables (neutron dose rate, neutron spectrum, irradiation temperature, steel chemical composition, and microstructure) must be minimized and results must be interpretable to within the same ±10 to 30 % (1σ) range.4.5.1.2 Advanced sensor sets (including dosimetry, temperature and damage correlation sensors) and practices have been established in support of the above for use by vendor/utility groups (1, 4, 5, 11, 39, 50, 54, 55).4.5.1.3 Benchmark field referencing of utilities' vendor/service laboratories, as well as advanced practices, is in progress or being planned that is (1, 3-6, 28, 50, 54-56):(1) Needed for validation of data correlation procedures and time and space extrapolations (to PV positions: surface, 1/4 T, etc.) of test reactor and power reactor surveillance capsule metallurgical and neutron exposure data.(2) Being or will be tested in test reactor neutron fields to quantify and minimize uncertainties and errors (included here is the use of damage correlation materials—steel, sapphire, etc.).4.5.2 Benchmark Field Referencing—The PSF (all positions: surveillance, surface, 1/4T, 1/2T, and the void box) together with the Melusine PV-simulator and other tests, such as for thermal neutron effects, provide needed validation data on all variables—dosimetry, physics, and metallurgy (1, 4, 10, 19, 21, 22, 37, 38). Other test reactor data comes from surveillance capsule results that have been benchmarked by vendor/service laboratory/utility groups (1, 3, 4, 6, 11, 18, 27, 28, 36, 40-44, 47).4.5.3 Reg. Guide 1.99, NRC, EPRI Databases—NRC and Electric Power Research Institute (EPRI) databases have been studied on an ongoing basis by ASTM Subcommittees E10.02 and E10.05, vendors, utilities, EPRI, and NRC contractors to establish improved databases for existing test and power reactor measured property change data. ASTM task groups recommend the use of updated and new exposure units (fluence total >0.1, >1.0 MeV, and dpa) for the NRC and EPRI databases (1, 2, 6, 7, 13, 18, 27, 36, 40-44, 47), and incorporate these recommendations in the appropriate standards. ASTM subcommittee E10.02 has updated the embrittlement database and the prediction model in E900–15. The exposure unit used is total fluence for E > 1 MeV. The basis of the prediction model is documented in an adjunct associated with E900, available from ASTM.4 The success of this effort depends on good cooperation between research and individual service laboratories and vendor/utility groups. An ASTM dosimetry cross section file based on the latest evaluations, as detailed in Guide E1018, and incorporating corrections for all known variables (perturbations, photo-reactions, spectrum, burn-in, yields, fluence time history, etc.) will be used as required and justified. Test reactor data will be addressed in a similar manner, as appropriate.1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel’s service life (Fig. 1). Referenced documents are listed in Section 2. The summary information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced standards (Section 2) and references for use by individual writers and users. More detailed writers’ and users’ information, justification, and specific requirements for the individual practices, guides, and methods are provided in Sections 3 – 5. General requirements of content and consistency are discussed in Section 6.FIG. 1 Organization and Use of ASTM Standards in the E706 Master Matrix1.2 This master matrix is intended as a reference and guide to the preparation, revision, and use of standards in the series.1.3 To account for neutron radiation damage in setting pressure-temperature limits and making fracture analyses ((1-12)2 and Guide E509), neutron-induced changes in reactor pressure vessel steel fracture toughness must be predicted, then checked by extrapolation of surveillance program data during a vessel’s service life. Uncertainties in the predicting methodology can be significant. Techniques, variables, and uncertainties associated with the physical measurements of PV and support structure steel property changes are not considered in this master matrix, but elsewhere ((2, 6, 7, 11-26) and Guide E509).1.4 The techniques, variables, and uncertainties related to (1) neutron and gamma dosimetry, (2) physics (neutronics and gamma effects), and (3) metallurgical damage correlation procedures and data are addressed in separate standards belonging to this master matrix (1, 17). The main variables of concern to (1), (2), and (3) are as follows:1.4.1 Steel chemical composition and microstructure,1.4.2 Steel irradiation temperature,1.4.3 Power plant configurations and dimensions, from the core periphery to surveillance positions and into the vessel and cavity walls,1.4.4 Core power distribution,1.4.5 Reactor operating history,1.4.6 Reactor physics computations,1.4.7 Selection of neutron exposure units,1.4.8 Dosimetry measurements,1.4.9 Neutron special effects, and1.4.10 Neutron dose rate effects.1.5 A number of methods and standards exist for ensuring the adequacy of fracture control of reactor pressure vessel belt lines under normal and accident loads ((1, 7, 8, 11, 12, 14, 16, 17, 23-27), Referenced Documents: ASTM Standards (2.1), Nuclear Regulatory Documents (2.3) and ASME Standards (2.4)). As older LWR pressure vessels become more highly irradiated, the predictive capability for changes in toughness must improve. Since during a vessel's service life an increasing amount of information will be available from test reactor and power reactor surveillance programs, procedures to evaluate and use this information must be used (1, 2, 4-9, 11, 12, 23-26, 28). This master matrix defines the current (1) scope, (2) areas of application, and (3) general grouping for the series of ASTM standards, as shown in Fig. 1.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

The purpose of this practice is to provide the minimum requirements necessary for the establishment of a quality assurance and production acceptance program for a manufacturer of light airplane UAS.1.1 This practice establishes the minimum requirements for the development of a Quality Assurance and Production Acceptance Program, to be used for the manufacture of Light Airplane Unmanned Aircraft Systems (UAS).1.2 Other documents relevant to this practice include Practice F 2279, 14 CFR Part 21, 14 CFR Part 23, and 14 CFR Part 43.1.3 This standard does not purport to address the quality assurance of the data-links, autopilot functions, and control stations.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This standard practice establishes a method for conducting accelerated laboratory aging of radial passenger or light truck tires, or both, in an oven.5.2 The goal of this practice is to define a scientifically valid protocol for the accelerated laboratory aging of a tire such that certain of its material properties correlate to those of in-service tires (see Appendix X1). This practice does not establish performance limits or tolerances for tire specifications.1.1 This practice describes a method to laboratory age a new tire in an oven to produce changes in certain chemical and physical properties at the belt edges similar to those of tires in-service (see Appendix X1).1.2 This practice is a precursor to conducting an ASTM standard roadwheel test method for laboratory generation of belt separation in radial passenger car and light truck tires.1.3 This practice may not produce representative chemical and physical property changes in any part of the tire except the belt edge.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The purpose of this standard practice is to provide the minimum requirements for the conduct of compliance audits.3.2 The intended use of standard is to provide a basis for an internal or external entity to develop an audit program. An audit program defines specific requirements for the execution of audits for a particular objective. An example of an audit program would be an external (third party) audit of LSA manufacturer’s quality assurance system.3.3 Compliance to this standard would insure that audit programs and those who develop and execute them are following a consensus set of minimum requirements.3.4 This standard does not mandate either internal or external audits.3.5 An auditing entity cannot request or approve an audit.3.6 Other Audit Criteria—Other audit criteria may be included in the audit scope if specified in the audit plan. Examples include safety, technical, operational, and management requirements. Items that are outside the scope of auditable criteria may be submitted as observations for possible resolution. However these are not binding and are not mandatory.3.7 Additional Services—Additional services are outside the scope of an audit objective. Examples of such services are consultation to resolve negative or open findings or any other service where the auditing entity conducts an activity other than an audit for the audited entity.3.8 Compliance Assurance—An audit is only an indicator of the compliance health of the facility and/or organization during only the period under review and therefore has limited compliance assurance and is not assumed to be exhaustive.3.9 Level of Review is Variable—The audit scope may vary to meet different audit objectives. For example, the audit scope may include only selected audit criteria, selected period under review, or selected portions of a facility or organization.1.1 This standard practice establishes the minimum set of requirements for auditing programs, methods, and systems, the responsibilities for all parties involved, and qualifications for entities conducting audits against ASTM standards on Light Sport Aircraft.1.2 This standard provides requirements to enable consistent and structured examination of objective evidence for compliance that is beneficial for the LSA industry and its consumers. It is the intent of this standard to provide the necessary minimum requirements for organizations to develop audit programs and procedures.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This specification provides designers and manufacturers of electric propulsion for light sport aircraft design references and criteria to use in designing and manufacturing EPUs.3.2 Declaration of compliance is based on testing and documentation during the design, ground testing and flight testing of the EPU by the manufacturer or under the manufacturers’ guidance.3.3 Manufacturers of the EPUs are encouraged to review and incorporate appropriate standards and lessons learned from ground based systems as documented in SAE J2344 and EASA CRI F-58 (see Appendix X2).3.4 Electric aircraft may contain potentially hazardous level of electrical voltage or current. It is important to protect persons from exposure to this hazard. Under normal operating conditions, adequate electrical isolation is achieved through physical separation means such as the use of insulated wire, enclosures, or other barriers to direct contact. There are conditions or events that can occur outside normal operation that can cause this protection to be degraded. Some means should be provided to detect degraded isolation or ground fault. In addition, processes or hardware, or both, should be provided to allow for controlled access to the high voltage system for maintenance or repair. A number of alternative means may be used to achieve these electrical safety goals including automatic hazardous voltage disconnects, manual disconnects, interlock systems, special tools and grounding. The intention of all these means is either to prevent inadvertent contact with hazardous voltages or to prevent damage or injury from the uncontrolled release of electric energy. Lightning strikes are not addressed in this Standard Practice because LSA aircraft are limited to VMC flight only.1.1 This practice covers minimum requirements for the design and manufacture of Electric Propulsion Units (EPU) for light sport aircraft, VFR use. The EPU shall as a minimum consist of the electric motor, associated controllers, disconnects and wiring, an Energy Storage Device (ESD) such as a battery or capacitor, or both, and EPU monitoring gauges and meters. Optional onboard charging devices, in-flight charging devices or other technology may be included.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to demonstrate compliance with state, EPA as well as relevant international regulations for PM emissions from light-duty vehicles.5.1.1 The EPA Tier 3 and CARB LEV III regulations specify FTP and SFTP PM emission standards for light-duty vehicles.1.1 This test method covers a procedure for the gravimetric determination of particulate matter (PM) collected from diluted light duty vehicle exhaust. It is applicable to mass rates from 0.32 to 32 mg/km (0.2 to 20 mg/mile).1.2 Diluted exhaust is passed through pre-weighed filter media which is re-weighed after sampling. The difference in weight is used to determine particulate mass, which is then used with other data to calculate the distance specific emissions.1.3 The particulate materials that are measured using this test method are generated by a vehicle following the PM standard applicable portions of the United States Environmental Protection Agency (EPA) and California Air Resources Board (CARB) driving schedules and test procedures for determining the emissions of light duty vehicles. For other jurisdictions, consult regional regulations for applicability of these test procedures. These test procedures are referenced in Annex A3 of this document.1.4 The primary intent of this test method is to summarize the PM measurement test procedures as defined by the EPA and CARB (40 CFR Parts §1066, §1065, §86.101, and CARB test procedures for hybrid vehicle testing).NOTE 1: Some requirements are generalized from core references for simplicity and to provide guidance for users applying the principals in this standard to regions not governed by EPA and CARB regulation. For specific details, reference the regulated procedures.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test procedure is used to simulate the physical and environmental stresses that a coating for exterior transportation applications (for example, automotive) is exposed to in a subtropical climate, such as southern Florida. It has been found that such a subtropical climate causes particularly severe deterioration of such coatings. The long water exposures and wet/dry cycling found in southern Florida are particularly important for this deterioration, in addition to the high dosage of solar radiation (3). This practice was developed to address the deficiencies of historical tests used for transportation coatings, especially automotive coatings (4).NOTE 1: This test procedure was developed through eight years of cooperative testing between automotive and aerospace OEM’s, material suppliers, and test equipment manufacturers. See References for published papers on this research.1.1 This practice specifies the operating procedures for a controlled irradiance xenon arc light and water apparatus. The procedure uses one or more lamp(s) and optical filter(s) to produce irradiance similar to sunlight in the UV and visible range. It also simulates the water absorption and stress cycles experienced by automotive exterior coatings under natural weathering conditions. This practice has also been found applicable to coatings on other transportation vehicles, such as aircraft, trucks and rail cars.1.2 This practice uses a xenon arc light source with specified optical filter(s). The spectral power distribution (SPD) for the lamp and special daylight filter(s) is as specified in Annex A1. The irradiance level used in this practice varies between 0.40 and 0.80 W/(m2·nm) at 340 nm. Water is sprayed on the specimens during portions of several dark steps. The application of water is such that the coatings will absorb and desorb substantial amounts of water during testing. In addition, the cycling between wet/dry and warm/cool will induce mechanical stresses into the materials. These test conditions are designed to simulate the physical and chemical stresses from environments in a subtropical climate, such as southern Florida.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers the requirements for a prediluted aqueous propylene glycol (50 volume % minimum) base engine coolant for use in automobiles and light-duty vehicles. When used without further dilution, this product functions effectively during both summer and winter in automotive and other light-duty engine cooling systems to provide adequate cooling system performance.Note 1-This specification is based on the knowledge of the performance of engine coolants prepared from new or virgin ingredients. See Appendix X3 for more information.1.2 The units quoted in this specification are to be regarded as standard. The values given in parentheses are approximate equivalents provided for information purposes only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers airworthiness requirements for the design of a powered or non-powered fixed wing light sport aircraft, a “glider.” Stability shall be shown by a tendency for the glider to return toward steady flight after: (1) a “push” from steady flight that results in a speed increase, followed by a non-abrupt release of the pitch control; and (2) a “pull” from steady flight that results in a speed decrease, followed by a non-abrupt release of the pitch control. Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed factors of safety). The suitability of each structural design detail and part having an important bearing on safety shall be established by test. Each combination of engine, exhaust, cooling and fuel system on a powered glider must be compatible with the glider, and function in a safe and satisfactory manner within the operational limits of the glider and powerplant. Each aircraft shall include Aircraft Operating Instructions (AOI).1.1 This specification covers airworthiness requirements for the design of a powered or non-powered fixed wing light sport aircraft, a “glider.”1.2 This specification is applicable to the design of a light sport aircraft glider as defined by regulations and limited to day VFR flight.1.3 A glider for the purposes of this specification is defined as a heavier than air aircraft that remains airborne through the dynamic reaction of the air with a fixed wing and in which the ability to remain aloft in free flight does not depend on the propulsion from a power plant. A powered glider is defined for the purposes of this specification as a glider equipped with a power plant in which the flight characteristics are those of a glider when the power plant is not in operation.1.4 The values stated in SI units are to be regarded as standard. The values given in parenthesis are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method covers the determination of surface deflections as a result of the application of an impulse load. The resulting deflections are measured at the center of the applied load and may also be measured at various distances away from the load. Deflections may be either correlated directly to pavement performance or used to determine in-situ material characteristics of the pavement layers. Some uses of data include quality control and quality assurance of compacted layers, structural evaluation of load-carrying capacity, and determination of thickness requirements for highway and airfield pavements (see Guide D4695).NOTE 1: Since pavement and subgrade materials may be stress dependent, care must be taken when analyzing LWD test data on unbound materials so that the applied stress will closely match the stress value applied by the design wheel load at the pavement surface.NOTE 2: The volume of the pavement and subgrade materials affected by the load is a function of the magnitude of the load. Therefore, care must be taken when analyzing the results, since the data obtained by the LWD may be obtained from a smaller volume of the unbound materials than under the influence of a heavy moving wheel load at the pavement surface.1.1 This test method covers the determination of deflections of paved and unpaved surfaces with a Light Weight Deflectometer (LWD). This device is also referred to as a Portable Falling-Weight Deflectometer (PFWD). The LWD is lightweight, portable, and generally used for testing unbound pavement layers. The deflections measured using an LWD can be used to determine the stiffness of bound and unbound pavement surfaces using appropriate back or forward calculation analysis techniques.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method describes the means of determining the LRV of a tile specimen. Certain building codes require the use of materials rated by LRV. Application of this test method provides the means for rating ceramic tile. LRVs reported for ceramic tile should include reference to the observer and illuminant for which the rating is valid. 5.2 LRV is a property dependent on the overall color of a tile specimen. Control of LRV is achieved through control of color and adherence to color specifications will govern the acceptability of a product with respect to LRV. Therefore, a product cannot be judged as having an unacceptable LRV unless the color of the product is found to be unacceptable. 5.3 Mixtures of several tile products are commonly installed on a surface, requiring a means to calculate LRV for a product mix. The rating obtained for an individual tile product can be used to calculate the LRV for a product mix using the following equation: where: n   =   number of products included in the mix, p1 to n   =   the proportion of the surface area taken up by each product; the sum of p1 to pn must equal one), and LRV1 to n   =   the LRV for each product used. For example, a mixture of two products is used on a surface. Two thirds of the surface area is covered by product A with a LRV of 75 %, and one third of the surface is covered by product B with an LRV of 60 % (see Fig. 2). Using the equation, the product mix is found to have an LRV of 70 %. FIG. 2 Example of Product Mix Used on Surface 5.4 The test method described herein provides instrumental means as the basis for judging color difference. Magnitude of color difference between pairs of ceramic tile can be determined and expressed in numerical terms. 5.5 Based on interlaboratory investigation,3 color difference ΔE of plain-colored tile, if determined in accordance with this test method, should give excellent reproducibility with a standard deviation of not more than σ = ±0.15 units. LRV should also give excellent reproducibility when used for solid colored tile based on the relationship between LRV and either the Y tristimulus or L value. However, LRV reproducibility for multicolored, speckled, or textured surface tile will be dependent upon the degree of variation of the tile specimen, and will require a different measurement procedure to minimize the impact of the variation. 5.6 The test method requires the use of multiple illuminants for the determination of color difference between solid-colored tiles. Evaluation under incandescent, fluorescent and daylight illuminant conditions ensure the color differences calculated between a test and reference specimen account for the possible occurrence of metamerism. 1.1 This test method covers the measurement of Light Reflectance Value (LRV) and visually small color difference between pieces of glazed or unglazed ceramic tile, using any spectrophotometer that meets the requirements specified in the test method. LRV and the magnitude and direction of the color difference are expressed numerically, with sufficient accuracy for use in product specification. 1.2 LRV may be measured for either solid-colored tile or tile having a multicolored, speckled, or textured surface. For tile that are not solid-colored, an average reading should be obtained from multiple measurements taken in a pattern representative of the overall sample as described in 9.2 of this test method. Small color difference between tiles should only be measured for solid-color tiles. Small color difference between tile that have a multicolored, speckled, or textured surface are not valid. 1.3 For solid colored tile, a comparison of the test specimen and reference specimen should be made under incandescent, fluorescent and daylight illuminant conditions. The use of multiple illuminants allows the color difference measurement to be made without the risk of wrongly accepting a match when the tiles being compared are metamers (see 3.1.4). 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers brick intended for use as paving material subjected to pedestrian and light vehicular traffic. The units are designed for use in pedestrian applications and vehicular areas that are subjected to low volumes of vehicular traffic, such as residential driveways and streets and commercial driveways (passenger drop-offs). Abrasion resistance is specified by one of three types: type I - brick subjected to extensive vibration, type II - brick subjected to intermediate abrasion, and type III - brick subjected to low abrasion. The brick shall conform to the physical requirements for the class specified as prescribed. The requirements for water absorption (24-h cold) and saturation coefficient specified, shall not be required if a sample of five brick survives 15 cycles of the sulfate soundness test. The brick shall meet the requirements of either column for the applicable traffic use.1.1 This specification covers brick intended for use as paving material subjected to pedestrian and light vehicular traffic. The units are designed for use in pedestrian applications and vehicular areas that are subjected to low volumes of vehicular traffic, such as residential driveways and streets and commercial driveways (passenger drop-offs). The units are not intended to support heavy vehicular traffic covered by Specification C1272 or for industrial applications covered by Specification C410.NOTE 1: Heavy vehicular traffic is defined as high volumes of heavy vehicles (trucks having 3 or more axles) in Specification C1272.1.2 The requirements of this specification apply at the time of purchase. The use of results from testing of brick extracted from pavements for determining compliance with the requirements of this specification is beyond the intent of this standard.1.3 Brick are manufactured from clay, shale, or similar naturally occurring earthy substances and subjected to a heat treatment at elevated temperatures (firing). The heat treatment must develop sufficient fired bond between the particulate constituents to provide the strength and durability requirement of this specification (see Terminology C1232).1.4 Use of this standard and the requirements herein to evaluate and corroborate the performance of a paving unit made from other materials, or made with other forming methods, or other means of binding the materials is not covered by the scope of this standard.1.5 The brick are available in a variety of sizes, colors, and shapes. They are available in three classes according to exposure environment and three types according to type of traffic exposure.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIE test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi-viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Specific Fuel Consumption (BSFC) is measured in kilogram per kilowatt hour.1.3 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow Meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Thermostat Block-Off Plate 6.13.5Oil Filter Adapter Plate 6.13.6Modified Throttle Body Assembly 6.13.7Fuel Rail 6.13.8Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.2Engine Assembly Procedure 9.3General Assembly Instructions 9.3.1Bolt Torque Specifications 9.3.2Sealing Compounds 9.3.3Harmonic Balancer 9.3.5Thermostat 9.3.6Coolant Inlet 9.3.7Oil Filter Adapter 9.3.8Dipstick Tube 9.3.9Sensors, Switches, Valves, and Positioners 9.3.10Ignition System 9.3.11Fuel Injection System 9.3.12Intake Air System 9.3.13Engine Management System 9.3.14Accessory Drive Units 9.3.15Exhaust Manifolds 9.3.16Engine Flywheel and Guards 9.3.17Lifting of Assembled Engines 9.3.18Engine Mounts 9.3.19Non-Phased Camshaft Gears 9.3.20Internal Coolant Orifice 9.3.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil Run 2 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIE Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level and Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Procedure  Procurement of Test Materials Annex A18Alternate Fuel Approval Requirements Annex A19Appendix  Useful Information Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏
133 条记录,每页 15 条,当前第 1 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页