微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method provides a means to measure a variety of fire-test-response characteristics associated with smoke obscuration and resulting from burning the electrical insulating materials contained in electrical or optical fiber cables. The specimens are allowed to burn freely under well ventilated conditions after ignition by means of a propane gas burner.5.2 Smoke obscuration quantifies the visibility in fires.5.3 This test method is also suitable for measuring the rate of heat release as an optional measurement. The rate of heat release often serves as an indication of the intensity of the fire generated. Test Method D5537 provides means for measuring heat release with the equipment used in this test method.5.4 Other optional fire-test-response characteristics that are measurable by this test method are useful to make decisions on fire safety. The most important gaseous components of smoke are the carbon oxides, present in all fires. They are major indicators of the toxicity of the atmosphere and of the completeness of combustion, and are often used as part of fire hazard assessment calculations and to improve the accuracy of heat release measurements. Other toxic gases, which are specific to certain materials, are less crucial for determining combustion completeness.5.5 Test Limitations: 5.5.1 The fire-test-response characteristics measured in this test method are a representation of the manner in which the specimens tested behave under certain specific conditions. Do not assume they are representative of a generic fire performance of the materials tested when made into cables of the construction under consideration.5.5.2 In particular, it is unlikely that this test method is an adequate representation of the fire behavior of cables in confined spaces, without abundant circulation of air.5.5.3 This is an intermediate-scale test, and the predictability of its results to large scale fires has not been determined. Some information exists to suggest that it has been validated against some large-scale scenarios.1.1 This is a fire-test-response standard.1.2 This test method provides a means to measure the smoke obscuration resulting from burning electrical insulating materials contained in electrical or optical fiber cables when the cable specimens, excluding accessories, are subjected to a specified flaming ignition source and burn freely under well ventilated conditions.1.3 This test method provides two different protocols for exposing the materials, when made into cable specimens, to an ignition source (approximately 20 kW), for a 20 min test duration. Use it to determine the flame propagation and smoke release characteristics of the materials contained in single and multiconductor electrical or optical fiber cables designed for use in cable trays.1.4 This test method does not provide information on the fire performance of electrical or optical fiber cables in fire conditions other than the ones specifically used in this test method, nor does it measure the contribution of the cables to a developing fire condition.1.5 Data describing the burning behavior from ignition to the end of the test are obtained.1.6 The production of light obscuring smoke is measured.1.7 The burning behavior is documented visually, by photographic or video recordings, or both.1.8 The test equipment is suitable for making other, optional, measurements, including the rate of heat release of the burning specimen, by an oxygen consumption technique and weight loss.1.9 Another set of optional measurements are the concentrations of certain toxic gas species in the combustion gases.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. (See IEEE/ASTM SI 10.)1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.13 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 These tests are suitable for testing paints adjusted for compatibility with various electrostatic spray coating applications, and by their use, spray performance can be optimized.1.1 These test methods cover the determination of specific resistance (resistivity) of liquid paints, solvents, and other fluids in the range of 0.6 to 2640 MΩ-cm.1.2 Test Method A describes a procedure for making resistance tests with a commonly used paint application test assembly (Fig. 1 and Fig. 2).FIG. 1 Analog Paint Application Test AssemblyFIG. 2 Diagram of Digital Application Test Assembly1.3 Test Method B describes a procedure for making resistance tests with a conductivity meter (Fig. 3).FIG. 3 Conductivity Meter1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 The significance of the variables set forth in this guide was proved by various laboratories using several test systems at test currents ranging from 100 to 35 000 A. These variables will be significant for any case where voltage and current are sufficient to produce arcing.1.1 This guide covers the major variables which affect the rate of arc erosion of electrical contact materials and serves as a guide in developing more detailed specifications for arc-erosion tests.1.2 Arc erosion testing involves some vaporization of material. It is the responsibility of the user to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet for the material being tested.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This test method defines the thermal expansion of porcelain enamel and glaze frits by the interferometric method. This determination is critical in avoiding crazing (cracking) of these glass coatings due to mismatching of the thermal expansion between the coating and substrate materials.1.1 This test method covers the interferometric determination of linear thermal expansion of premelted frits (porcelain enamel and glaze) and fired ceramic whiteware materials at temperatures lower than 1000 °C (1830 °F).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to aid those interested in the engineering properties of roofing and waterproofing sheet materials and membranes.5.2 This test method enables a researcher to measure the relative flexibility of roofing and waterproofing sheet materials and membranes under standard conditions in the laboratory.5.3 The data obtained from this test method will not permit prediction of the service life of a membrane. Membrane flexibility is important during application, and changes in flexibility are believed to be linked to the performance of roofing and waterproofing membranes, but the actual link between test data and performance is unknown and is dependent on the materials and exposure.1.1 This test method measures the flexibility of roofing or waterproofing sheet materials or membranes by bending the test material over a block containing arcs of specific radii at a standard temperature.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide provides an alternative way to measure the porosity of catalytic materials without the use of mercury porosimetry. It is useful for research and development as well as quality control purposes. (See Test Methods D4284 and D6761.)1.1 This guide describes how to measure the pore volume of catalytic materials by water immersion with the excess water removed with a centrifuge. The measured pore volume is converted to the dry pore volume by using the loss on ignition (LOI) of the material. It is generally applicable to both powdered materials and particles greater than about 1 mm.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Some insulation materials contain moisture, which will affect the thermal and other physical properties of the insulation.1.1 This test method will determine the moisture content, as a percentage of the dry weight of organic and inorganic insulation materials.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The jet cup attrition test will provide an estimate of the relative attrition resistance of fluid catalytic cracking (FCC) catalyst, catalyst additives, and catalytic materials.5.2 The test is designed to simulate the attrition a catalyst or additive undergoes in a fluid catalytic cracking unit but at an accelerated rate.5.3 The data from this test can be used to rank catalyst according to attrition rate.5.4 The test requires a relatively small sample size of 5 g [0.175 oz] and a relatively short analysis time of 40 min. This test should be useful to quality control facilities that require fast turnaround time and research and development (R&D) facilities that have limited sample material.1.1 The jet cup attrition test is applicable to fluid catalytic cracking (FCC) catalysts, catalyst additives, and catalytic materials.1.2 Applications for other powdered catalysts have been reported in the literature. The round robin test samples included two FCC catalysts and one powdered alumina.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Pipe and duct insulation systems are often evaluated with Test Method E84 to comply with building or mechanical code requirements. This practice describes, in detail, specimen preparation and mounting procedures for single-component pipe or duct insulation systems and for multi-component pipe or duct insulation systems.5.2 The material, system, composite, or assembly tested shall be representative of the completed insulation system used in actual field installations, in terms of the components, including their respective thicknesses.5.3 Pipe and duct insulation systems consist of a variety of materials and constructions.5.4 Some testing laboratories have developed a number of protocols for testing pipe or duct insulation systems which utilize one generic type of materials, all of them with an insulation core and a jacket. Those protocols are the origin of this practice, which makes them generic, to reduce material bias in the standard; they have resulted in the procedures presented in 6.1. The procedures presented in 6.2 – 6.5 address other types of pipe or duct insulation systems.5.5 This practice addresses specimen preparation and mounting of systems of the types described in 5.5.1 – 5.5.3 and testing of supplementary materials as described in 5.6.5.5.1 Multi-component systems containing an insulation core and a jacket, with or without adhesive between insulation core and jacket, not intended to be bonded to a pipe or duct substrate. Specimen preparation and mounting for such systems is described in 6.1 if they are self-supporting and in 6.2 if they are not self-supporting.5.5.2 Single component systems, not intended to be bonded to a pipe or duct substrate. Specimen preparation and mounting for such systems is described in 6.3 if they are self-supporting and in 6.4 if they are not self-supporting.5.5.3 Systems intended to be bonded to a pipe or duct substrate. Specimen preparation and mounting for such systems is described in 6.5.5.5.4 Reflective insulation materials (see 3.2.10 and 3.2.11) intended to be used as pipe or duct insulation materials and installed with an air gap shall be tested using the procedures for specimen preparation and mounting procedures described in Practice E2599. Reflective insulation materials intended to be used as pipe or duct insulation materials and installed without an air gap shall be tested using the specimen preparation and mounting procedures described in Section 6 of this practice.5.5.5 Specimen preparation and mounting procedures for systems not described in this practice shall be added as the information becomes available.5.6 Supplementary Materials: 5.6.1 It is recognized that supplementary materials for pipe or duct insulation systems are normally able to generate heat, flame or smoke. Thus, the fire safety of the entire system depends, at least to some extent, on the fire performance of supplementary materials. Consequently, the fire-test-response characteristics of all supplementary materials shall be assessed to obtain a full assessment of the fire-test-response of the pipe or duct insulation system. See Appendix X1.5.6.2 Supplementary materials are often present intermittently spaced, and not for an extended length, in a pipe or duct insulation system. Thus, it is not always possible to suitably test them in conjunction with a pipe or duct insulation system.5.6.3 Testing of Supplementary Materials—Supplementary materials that have not been fully tested in conjunction with the pipe or duct insulation system, in accordance with Section 6, shall be tested for flame spread and smoke development as single-component systems, in accordance with Test Method E84.5.7 The limitations for this procedure are those associated with Test Method E84.1.1 This practice describes procedures for specimen preparation and mounting when testing pipe and duct insulation materials to assess flame spread and smoke development as surface burning characteristics using Test Method E84.1.2 If the pipe or duct insulation materials to be tested are reflective insulation materials (see 3.2.10 and 3.2.11), the materials shall be tested using the procedures for specimen preparation and mounting described in Practice E2599 and not the procedures described in 6.1 through 6.6.1.3 Testing is conducted with Test Method E84.1.4 This practice does not provide pass/fail criteria that can be used as a regulatory tool.1.5 Use the values stated in inch-pound units as the standard, in referee decisions. The values in the SI system of units are given in parentheses, for information only; see IEEE/ASTM SI-10 for further details.1.6 This fire standard cannot be used to provide quantitative measures.1.7 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. Fire testing involves hazardous materials, operations, and equipment. This standard gives instructions on specimen preparation and mounting, but the fire-test-response method is given in Test Method E84. See also Section 8.1.8 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered requirements of the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is normally used to evaluate the barrier effectiveness against penetration of liquids through materials, seams, closures, or other planar assemblies used in protective clothing and specimens from finished items of protective clothing.5.1.1 Finished items of protective clothing include gloves, arm protectors, aprons, coveralls, suits, hoods, boots, and similar items.5.1.2 The phrase “specimens from finished items” is permitted to include continuous regions of protective clothing items as well as seamed or other discontinuous regions of protective clothing.5.1.3 The types of specimens are limited to those that are relatively flat (planar) that are capable of being sealed in the test cell specified in this test method without peripheral leakage.5.2 A substitute challenge liquid (for example, water or isopropanol) is appropriate in some cases to generalize material penetration resistance to liquids. However, it is possible that differences in chemical and molecular properties (for example, surface tension) may lead to different results.5.3 In addition to the failure mode where a liquid finds a pathway for penetration through a void, imperfection, or defect in material or clothing subassembly, some selected chemicals cause degradation of barrier material, film, or coating, leading to penetration over extended periods of contact.75.4 Five different procedures for how the specimen is exposed to the liquid are provided in Table 1. In this test method, all procedures involve liquid exposure that is continuous over the duration of the test. These procedures entail different hydrostatic pressures and durations of liquid exposure.5.4.1 Procedures A, B, and C apply a set pressure (6.9 or 13.8 kPa [1 or 2 psig]) for a specified period of time (1 or 10 min) over a 15- or 60-min liquid exposure time.5.4.2 Procedures A and B represent the originally established methods of liquid contact developed by the National Institute for Occupational Safety and Health, where Procedure A involves the application of a test pressure (13.8 kPa [2 psig]) that has been found to discriminate the liquid barrier performance of materials, while a lower pressure (6.9 kPa [1 psig]) is used for Procedure B to accommodate materials that exhibit ballooning or extension when the 13.8 kPa (2 psig) pressure is applied.8,9 Both procedures entail exposure of the specimen for 5 min at ambient pressure followed by 10 min of exposure of the specimen to the test pressure.5.4.3 Procedure C was developed to account for potentially longer exposures where failure may also occur as the result of material or assembly degradation. Procedure C uses a 13.8 kPa (2 psig) test pressure for a portion of the test where the specimen is first exposed to the liquid at ambient pressure for 5 min, followed by 1 min at 13.8 kPa (2 psig), and continuing for 54 additional minutes at ambient pressure.5.4.4 Procedure D involves the sequential increase of pressure from ambient (0 kPa [0 psig]) to 68.9 kPa (10 psig) in increments of 3.5 kPa (0.5 psig) in 1-min intervals until liquid penetration is observed at a specific test pressure. The time interval between changes in pressure is set at 1 min to coincide with the time of applied pressure in Procedure C.5.4.5 Procedure E permits the test method user to specify the pressures and duration of the specimen’s exposure to the liquid.5.5 Different results are reported by the different procedures.5.5.1 Procedures A, B, and C results are reported as “pass” or “fail” for each replicate. Passing results indicate that no liquid penetration was observed over the duration of the test exposure.5.5.2 Procedure D results are reported as the test pressure at which liquid penetration was observed for each replicate.5.6 The choice of pressure/time sequence and type of test result are dependent on the objectives of the testing.5.6.1 Procedure C is specified in several different National Fire Protection Association standards for establishing the minimum barrier performance of protective clothing materials, seams, and closures of first responder protective clothing.5.6.2 Procedure D may be used when the pressure where penetration occurs is sought without a set pressure pass/fail criterion. Procedure D also has utility for assessing the robustness of protective clothing materials and assemblies as part of quality systems. It is also possible to use Procedure D to supplement the pass/fail results provided by Procedures A, B, and C.5.6.3 Procedure E permits setting a specific sequence of pressure/time exposures based on the specific needs for the testing.5.6.4 In this test method, a hydrostatic pressure is applied but does not necessarily correlate with a mechanical pressure against a semi-rigid or rigid surface.5.6.5 It is recommended that a human factors investigation, hazard/risk exposure assessment, or similar study be conducted to determine the most suitable procedure for relating the choice of a specific procedure for measuring protective clothing material liquid penetration resistance to the intended protective performance of the clothing material.5.7 This test method permits the use of a retaining screen for preventing the overextension of a specimen as pressure is applied. However, it is important that the selected retaining screen does not interfere with the observation of liquid penetration or affect the sealing of the specimen in the test cell.5.8 A critical feature of the test is how the specimen is sealed in the test cell. Inadequate sealing of the specimen can lead to a false result (observed liquid penetration that is due to the method of sealing rather than penetration through the specimen). It is recommended that any special means used to seal specimens in the test cell be validated for providing sufficient integrity of the specimen in the test cell, not contribute to specimen damage, and not interfere with the observation of liquid penetration. Special means used to seal specimens in the test cell should be documented in the report.5.9 A minimum number of three test specimens is established for this test method. However, it is also appropriate to establish sampling plans based on a specific acceptable quality limit using a larger number of specimens, depending on the application of the test method. Potential sampling plans for this approach are found in MIL-STD-105E, ANSI/ASQC Z1.4, and ISO 2859-1.5.10 This test method does not address the liquid penetration of full protective clothing or ensembles. Use Test Method F1359 to provide a complete evaluation of the liquid integrity of protective clothing or ensembles, particularly areas of the clothing or ensembles that cannot be directly assessed by this test method, such as interface areas between different items of clothing and equipment.1.1 This test method is used to test specimens of protective clothing materials, assemblies such as seams and closures, or interfaces used in the construction of protective clothing. The resistance to visible penetration of the test liquid is determined with the liquid in continuous contact with the normally outside (exterior) surface of the test specimen.1.2 This test method includes different procedures for maintaining the liquid in contact with the test specimen in terms of the length of exposure and the pressure applied. Suggestions are provided for how to select an appropriate procedure for liquid contact.1.3 In some cases, significant amounts of hazardous materials will permeate specimens that pass the penetration tests. For more sensitive analyses, use either Test Method F739 or F1383 to determine permeation.1.4 This test method does not address penetration of vapors through protective clothing materials.1.5 This test method is not applicable to non-planar protective clothing materials, interfaces, or assemblies such as the fingertips or crotch areas of gloves, which are possible failure points.1.6 This test method does not address the liquid penetration resistance of full protective clothing items or ensembles. Use Test Method F1359 for this purpose.1.7 The values as stated in inch-pound units are to be regarded as the standard. The values in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 7.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 The modulus of rupture of carbon-containing refractories at elevated temperatures has become accepted as a useful measurement in quality control testing and in research and development. These measurements are also used to determine the suitability of particular products for various applications and to develop specifications. The sample may undergo some oxidation during the test.3.2 In 1988, ruggedness testing was conducted on this test procedure. The following variables were studied:3.2.1 Testing temperature (2525 (1385) versus 2575 °F (1413 °C)),3.2.2 Air atmosphere versus argon atmosphere in the furnace,3.2.3 Hold time prior to breaking the sample (12 versus 18 min), and3.2.4 Loading rate on the sample (175 (778) versus 350 lb/min (1556 N/min)).3.3 Resin-bonded magnesia-carbon brick containing approximately 17 % carbon after coking were tested in two separate ruggedness tests. Metal-free brick were tested in the first ruggedness test, while aluminum-containing brick were tested in the second. Results were analyzed at a 95 % confidence level.3.4 For the metal-free brick, the presence of an argon atmosphere and hold time had statistically significant effects on the modulus of rupture at 2550 °F (1400 °C). The argon atmosphere yielded a lower modulus of rupture. The samples tested in air had a well-sintered decarburized zone on the exterior surfaces, possibly explaining the higher moduli of rupture. The longer hold time caused a lower result for the metal-free brick.3.5 For the aluminum-containing brick, testing temperature, the presence of an argon atmosphere, and loading rate had statistically significant effects on the modulus of rupture at 2550 °F (1400 °C). The higher testing temperature increased the measured result, the presence of an argon atmosphere lowered the result, and the higher loading rate increased the result.1.1 This test method covers the determination of the modulus of rupture of carbon-containing refractories at elevated temperatures in air.1.2 The values stated in inch-pound units and degrees Fahrenheit are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Portable hardness testers are used for testing materials that because of their size, location or other requirements such as test point are unable to be tested using traditional fixed instruments.3.2 Portable hardness testers, by their nature, induce variation that could influence the test results; therefore, hardness measurements made in accordance with this test method are not considered to meet the requirements of E10 or E18. The user should compare the results of the precision and bias studies in E110, E10 and E18 to understand the differences in results expected between portable and fixed instruments.3.3 Two test parameters that can significantly influence the measurement accuracy when using portable hardness testers are the alignment of the indenter to the test surface and the timing of the test forces. The user is cautioned to do everything possible to keep the centerline of the indenter perpendicular to the test surface and to apply the test forces using the same time cycle as defined in Test Method E10 or Test Methods E18.3.4 Portable hardness testers are delicate instruments that are subject to damage when they are moved from one test site to another. Therefore, repeating the daily verification process during the testing sequence is recommended to insure that they are working properly.3.5 Hardness testing at a specific location on a part may not represent the physical characteristics of the whole part or end product.AbstractThis test method establishes the standard procedures, including the calibration, precision and bias of the apparatus used, for the determination of indentation hardness of metallic materials by means of portable hardness testers.1.1 This test method defines the requirements for portable instruments that are intended to be used to measure the Rockwell or Brinell hardness of metallic materials by performing indentation tests on the surface of materials in the field or outside of a test lab, or in cases where the size or weight of the test piece prevents it from being tested on a standard E10 or E18 hardness tester.1.2 The principles used to measure the Rockwell or Brinell hardness are the same as those defined in the E18 standard test method for Rockwell or E10 standard test method for Brinell.NOTE 1: Standard test methods E10 and E18 will be referred to in this test method as the standard methods.1.3 The portable hardness testers covered by this test method are verified only by the indirect verification method. Although the portable hardness testers are designed to employ the same test conditions as those defined in the standard test methods, the forces applied by the portable Rockwell and Brinell testers and the depth measuring systems of the portable Rockwell testers may not meet the tolerance requirements of the standard methods. Portable hardness testers shall use indenters that meet the requirements of the standard test methods.1.4 This test method does not apply to portable hardness testers that measure hardness by a means or procedure that is different than those defined in E10 or E18 For example, this test method does not apply to the methods defined in ASTM standard Practice A833, Test Methods A956 and A1038 or B647.1.5 A report section is included to define how to indicate that the test result was obtained by using a portable device that conforms to this document.1.6 Annex A1 is included that defines the periodic indirect verification and daily verification requirements for these instruments.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Laminates are made by bonding together two or more layers of material or materials, where each layer might be a single or multi-layer material. When the bonding agent is reactive and requires time to reach full performance, the bond strength is typically measured as a green (un-cured) bond and a cured bond. For processes that intentionally create a nonlaminated edge, that edge is generally used to initiate the bond strength measurement. The techniques described in this practice can be used to initiate separation of plies when a non-laminated edge is not present.1.1 This practice describes techniques for separating plies of laminates made from flexible materials such as cellulose, paper, plastic film, and foil to enable the measurement of the bond strength or ply adhesion of the laminate. This includes laminates made by various processes: adhesive laminates, extrusion coatings, extrusion laminates, and coextrusions.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 6.1.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test standard describes how to evaluate the relative sensitivity of materials and components to dynamic pressure impacts by various gaseous fluid media (can include gas mixtures).4.2 Changes or variations in test specimen configurations, thickness, preparation, and cleanliness can cause a significant change in their impact ignition sensitivity/reaction. For material tests, the test specimen configuration shall be specified on the test report.4.3 Changes or variation in the test system configuration from that specified herein may cause a significant change in the severity produced by a dynamic pressure surge of the gaseous media.4.4 A reaction is indicated by an abrupt increase in test specimen temperature, by obvious changes in odor, color, or material appearance, or a combination thereof, as observed during post-test examinations. Odor alone is not considered positive evidence that a reaction has occurred. When an increase in test specimen temperature is observed, a test specimen reaction must be confirmed by visual inspection. To aid with visual inspection, magnification less than 10× can be used.4.5 When testing components, the test article must be disassembled and the nonmetallic materials examined for evidence of ignition after completion of the specified pressure surge cycles.4.6 Ignition or precursors to ignition for any test sample shall be considered a failure and are indicated by burning, material loss, scorching, or melting of a test material detected through direct visual means. Ignition is often indicated by consumption of the non-metallic material under test, whether as an individual material or within a component. Partial ignition can also occur, as shown in Fig. 3a, b, and c, and shall also be considered an ignition (failure) for the purpose of this test standard.FIG. 3 a Untested PCTFE (10X Magnification) (Polychlorotrifluoroethylene) Sample.FIG. 3 b Untested Nylon (PA, polyamide) Valve Seat (10X magnification) (continued)FIG. 3 c Untested Pin-Index Sealing Washer (10X magnification) (continued)NOTE 1: For the purpose of this standard, test samples that visually appear in these conditions, or similar, are considered to be representative of ignition.FIG. 3 Photographs Representing Partial Reactions Including Scorching, Discoloration, Melting and Material Loss or Material Consumption. For the purpose of this standard, test samples that visually appear in these conditions, or similar, are considered to be representative of ignition.NOTE 2: A representative (exemplar) material or component may be requested by the test laboratory personnel for visual comparison with the post-test condition of the test samples.4.7 For material testing, the prescribed procedure is conducted on multiple samples until a statistically significant number of ignitions or no-ignitions, or both, are achieved at various test pressures. The data is then analyzed by a procedure that calculates the median failure pressure (i.e., the 50 % reaction pressure) or the functional form of the ignition probability versus pressure by logistic regression analysis. Materials tested in a similar configuration can be ranked against each other by either of these two criteria. The initial test gas temperature may be varied as required depending on the requirements of the test.4.8 For component testing, a specified number of pressure surge cycles are conducted at a defined test pressure, usually specified by a particular industry test standard. Usually, this pressure is 1.2 times the maximum allowable working pressure of the component. The initial test gas temperature may be varied depending on the requirements of the test; however, most commonly the initial test gas temperature is 60 ± 3 °C.1.1 This test method describes a method to determine the relative sensitivity of nonmetallic materials (including plastics, elastomers, coatings, etc.) and components (including valves, regulators flexible hoses, etc.) to dynamic pressure impacts by gases such as oxygen, air, or blends of gases containing oxygen.1.2 This test method describes the test apparatus and test procedures employed in the evaluation of materials and components for use in gases under dynamic pressure operating conditions up to gauge pressures of 69 MPa and at elevated temperatures.1.3 This test method is primarily a test method for ranking of materials and qualifying components for use in gaseous oxygen. The material test method is not necessarily valid for determination of the sensitivity of the materials in an “as-used” configuration since the material sensitivity can be altered because of changes in material configuration, usage, and service conditions/interactions. However, the component testing method outlined herein can be valid for determination of the sensitivity of components under service conditions. The current provisions of this method were based on the testing of components having an inlet diameter (ID bore) less than or equal to 14 mm (see Note 1).1.4 A 5 mm Gaseous Fluid Impact Sensitivity (GFIS) test system and a 14 mm GFIS test system are described in this standard. The 5 mm GFIS system is utilized for materials and components that are directly attached to a high-pressure source and have minimal volume between the material/component and the pressure source. The 14 mm GFIS system is utilized for materials and components that are attached to a high pressure source through a manifold or other higher volume or larger sized connection. Other sizes than these may be utilized but no attempt has been made to characterize the thermal profiles of other volumes and geometries (see Note 1).NOTE 1: The energy delivered by this test method is dependent on the gas volume being rapidly compressed at the inlet to the test specimen or test article. Therefore the geometry of the upstream volume (diameter and length) is crucial to the test and crucial to the application of the results to actual service conditions. It is therefore recommended that caution be exercised in applying the results of this testing to rapid pressurization of volumes larger than those standardized by this test method. This energy delivered by this standard is based on the rapid compression of the volume in either a 5 mm ID by 1000 mm long impact tube or a 14 mm ID by 750 mm long impact tube. These two upstream volumes are specified in this standard based on historic application within the industry.1.5 This test method can be utilized to provide batch-to-batch comparison screening of materials when the data is analyzed according to the methods described herein. Acceptability of any material by this test method may be based on its 50 % reaction pressure or its probability of ignition based on a logistic regression analysis of the data (described herein).1.6 Many ASTM, CGA, and ISO test standards require ignition testing of materials and components by gaseous fluid impact, also referred to as adiabatic compression testing. This test method provides the test system requirements consistent with the requirements of these other various standards. The pass/fail acceptance criteria may be provided within other standards and users should refer to those standards. Pass/fail guidance is provided in this standard such as that noted in section 4.6. This test method is designed to ensure that consistent gaseous fluid impact tests are conducted in different laboratories.1.7 The criteria used for the acceptance, retest, and rejection, or any combination thereof of materials and components for any given application shall be determined by the user and are not fixed by this method. However, it is recommended that at a minimum the 95 % confidence interval be established for all test results since ignition by this method is inherently probabilistic and should be treated by appropriate statistical methods.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautions see Section 7.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
986 条记录,每页 15 条,当前第 1 / 66 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页