微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 This test method is designed to measure the apparent torsional modulus3 of a leather specimen. Experience has shown that the torsion modulus of leather is directly related to the characteristic known as stiffness when felt in a glove.41.1 This test method describes the use of a torsional apparatus for measuring the relative stiffness of gloving leathers. This test method does not apply to wet blue.1.2 The values stated in SI units are to be regarded as the standard. The values shown in parentheses are provided for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The tests results represent afterflame and afterglow time in seconds for a material of specified shape, under the conditions of this test method.5.2 The effect of material thickness, color additives, and possible loss of volatile components is measurable.5.3 The results, when tabulated, are potentially useful as a reference for comparing the relative performance of materials and as an aid in material selection.5.4 In this procedure, the specimens are subjected to one or more specific sets of laboratory test conditions. Different test conditions will likely result in changes in the fire-test-response characteristics measured. Therefore, the results are valid only for the fire-test-exposure conditions described in this test method.1.1 This fire-test-response standard covers a small-scale laboratory procedure for determining comparative burning characteristics of solid-plastic material, using a 20-mm (50W) premixed flame applied to the base of specimens held in a vertical position.NOTE 1: This test method and the 20 mm (50W) Vertical Burning Test (V-0, V-1, or V-2) of ANSI/UL 94 are equivalent.NOTE 2: This test method and Test Method B of IEC 60695–11–10 are equivalent. IEC 60695–11–10 has replaced ISO 1210.NOTE 3: For additional information on materials that burn up to the holding clamp by this test method, see Test Method D635. For test methods of flexible plastics in the form of thin sheets and film, see Test Method D4804. For additional information on comparative burning characteristics and resistance to burn-through, see Test Method D5048.1.2 This test method was developed for polymeric materials used for parts in devices and appliances. The results are intended to serve as a preliminary indication of their acceptability with respect to flammability for a particular application. The final acceptance of the material is dependent upon its use in complete equipment that conforms with the standards applicable to such equipment.1.3 The classification system described in the appendix is intended for quality assurance and the preselection of component materials for products.1.4 It is possible that this test is applicable to nonmetallic materials other than plastics. Such application is outside the scope of this technical committee.1.5 This test method does not cover plastics when used for building construction, finishing or contents such as wall and floor coverings, furnishings, decorative objects etc. In addition, the fire resistance (in terms of an hourly rating), flame spread, smoke characterization and heat release rate are not evaluated by this test. Other fire tests exist and shall be used to evaluate the flammability of materials in these intended end use product configuration.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Significance—The increased use of geomembranes as barrier materials to restrict fluid migration from one location to another in various applications, and the various types of seaming methods used in joining geomembrane sheets, has created a need to standardize tests by which the various seams can be compared and the quality of the seam systems can be evaluated. This test method is intended to meet such a need.4.2 Use—Accelerated seam test provides information as to the status of the field seam. Data obtained by this test method should be used with site-specific contract plans, specification, and CQC/CQA documents. This test method is useful for specification testing and for comparative purposes, but does not necessarily measure the ultimate strength that the seam may acquire.1.1 This test method covers an accelerated, destructive test method for geomembranes in a geotechnical application.1.2 This test is applicable to field-fabricated geomembranes that are scrim reinforced or nonreinforced.1.3 This test method is applicable for field seaming processes that use a chemical fusion agent or bodied chemical fusion agent as the seaming mechanism.1.4 Subsequent decisions as to seam acceptance criteria are made according to the site-specific contract plans, specification, and CQC/CQA documents.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 Hazardous Materials—The use of the oven in this test method may accelerate fume production from the test specimen and solvent(s) used to bond them.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice is a performance-based standard for an electrical method for locating leaks in exposed geomembranes. For clarity, this practice uses the term “leak” to mean holes, punctures, tears, knife cuts, seam defects, cracks, and similar breaches in an installed geomembrane (as defined in 3.2.6).1.2 This practice can be used for geomembranes installed in basins, ponds, tanks, ore and waste pads, landfill cells, landfill caps, canals, and other containment facilities. It is applicable for geomembranes made of materials such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, bituminous geomembrane, and any other electrically insulating materials. This practice is best applicable for locating geomembrane leaks where the proper preparations have been made during the construction of the facility.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Significance—With the increased use of geomembranes as a barrier material to restrict liquid migration from one location to another, a need has been created for a standard test method to evaluate the quality of geomembrane seams produced by tape methods. In the case of geomembranes, it has become evident that geomembrane seams can exhibit separation in the field under certain conditions. This is an index-type test method used for quality assurance and quality control purposes; it is also intended to provide the quality engineer with sufficient seam peel and shear data to evaluate seam quality.4.2 Use—Recording and reporting data, such as separation that occurs during the peel test and elongation during the shear test, will allow the quality assurance engineer to take measures necessary to ensure the repair of inferior seams during construction, and therefore, minimize the potential for seam separation while in service. The acceptable value of adhesion measured will, of course, vary from product to product as a result of different formulations and types of products. However, once a product is established, minimum values of separation force can be determined and agreed to by producer and consumer, and both can monitor the installation to ensure maintenance of the agreed-upon minimum value.1.1 This test method describes destructive quality control and/or quality assurance tests to determine the integrity of seams produced using taped seaming methods. This test method presents the procedures used for determining the quality of taped seams subjected to both peel and shear tests. These test procedures are intended for nonreinforced and reinforced geomembranes.1.2 The types of tape seaming techniques used to construct geomembrane seams include the following:1.2.1 Inseam Tape—This technique requires the membrane to be overlapped a minimum distance. The top sheet is folded back and both the bottom sheet and the top sheet are primed with an adhesive primer. The primer is allowed to flash off. The tape adhesive is applied to the bottom sheet so that a minimum of the tape will extend out from under the top sheet when laid over the tape. The top sheet is allowed to lay flat over the tape and the release paper is removed by pulling it at a 45° to 90° angle, keeping the release paper flat to the surface of the bottom sheet. The seam area is then rolled with a silicone-sleeved roller.1.2.2 Cover Strip Tape—This technique requires the membrane to be overlapped a minimum distance. An area either side of the seam edge is primed. The primer is allowed to flash off. The cover strip is applied with the adhesive side down, centered over the top sheet edge while removing the release paper as it proceeds along centered over the edge of the top sheet. The cover strip is then rolled with a silicone-sleeved roller.1.3 For nondestructive test methods, see Practice D4437/D4437M.1.4 This test method is applicable for seaming processes that use tape adhesive as a seaming mechanism.1.5 Subsequent decisions as to seam acceptance criteria are made according to the site-specific contract plans, specifications, and contractor quality control/contractor quality assurance (CQC/CQA) documents.1.6 In case of a material-specific test method, this test method shall take precedence.1.7 Hazardous Materials—Always consult the proper material safety data sheets for any hazardous material used for the proper ventilation and protection. The use of the oven in these test methods, in this practice, may accelerate fume production from the test specimen.1.8 The values stated in both inch-pound and SI units are to be regarded separately as the standard. Values in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Significance—This test method provides a means to measure the transmissivity of parts in the field (already installed on aircraft) and of large, thick or curved parts physically difficult to measure using Test Method D1003.5.2 Use—This test method is acceptable for use on any transparent part. It is primarily intended for use on large, curved, or thick parts either pre- or post-installation (for example, windscreens on aircraft).1.1 This test method describes an apparatus and procedure that is suitable for measuring the transmissivity of large, thick, or curved transparent parts including parts already installed. This test method is limited to transparencies that are relatively neutral with respect to wavelength (not highly colored).1.2 Since the transmissivity (transmission coefficient) is a ratio of two luminance values, it has no units. The units of luminance recorded in the intermediate steps of this test method are not critical; any recognized units of luminance (for example, foot-lamberts or candelas per square metre) are acceptable for use, as long as use is consistent.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Vibration encountered in the field is not usually simple harmonic.3.2 This test can be used to determine relative motion between parts, critical frequencies, adhesion strengths, loosening of parts or other physical effects that can cause fatigue or failure.3.3 Experience has shown that this test will expose potential failures associated with the electronic components of a membrane switch, where tests of lower levels will not.3.4 This practice can be used to qualify a membrane switch for aerospace, medical and other applications.3.5 This test is potentially destructive, intended for device qualification.3.6 Either Test Condition A or B can be chosen, based upon the intent of the test determined by the qualified engineer.1.1 This test method establishes procedures for determining the effect of sinusoidal vibration, within the specified frequency range, on switch contacts, mounting hardware, adhered component parts, solder or heat stakes, tactile devices, and cable or ribbon interconnects associated with a membrane switch or membrane switch assembly.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Moisture as determined by this test method is used for calculating other analytical results to a moisture free basis using procedures in Practice D3180. Moisture percent determined by this test method may be used in conjunction with the air-dry moisture loss determined in Method D2013 and Test Method D3302 to determine total moisture in coal. Total moisture is used for calculating other analytical results to “as received” basis using Practice D3180. Moisture, ash, volatile matter, and fixed carbon percents constitute the proximate analysis of coal and coke.1.1 This test method covers the determination of moisture in the analysis sample of coal or coke. It is used for calculating other analytical results to a dry basis. When used in conjunction with the air drying loss as determined in accordance with Method D2013 or Practice D346, each analytical result can be calculated to an as-received basis:1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide provides an alternative way to measure the porosity of catalytic materials without the use of mercury porosimetry. It is useful for research and development as well as quality control purposes. (See Test Methods D4284 and D6761.)1.1 This guide describes how to measure the pore volume of catalytic materials by water immersion with the excess water removed with a centrifuge. The measured pore volume is converted to the dry pore volume by using the loss on ignition (LOI) of the material. It is generally applicable to both powdered materials and particles greater than about 1 mm.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Cleaning provides well documented benefits in terms of creating cleaner, safer, and healthier surroundings by extracting harmful pollutants from the indoor environment (see Ref (3)). An improperly maintained indoor environment could give rise to biological contaminants, and buildup of particulate matter and gases which can have serious health effects. These negative impacts may have adverse affects on worker productivity affecting both cleaning personnel and tenants through increased complaints, absenteeism, injuries, asthmatic incidents, or other symptoms. Inappropriate or improper use or selection of cleaning products and processes, along with failure to follow label directions could result in injury or illness to cleaning personnel or building occupants. In addition, it may be detrimental to the physical structure and systems of the building, or to the environment. Moreover, owners and operators maintain the liability for the proper function of the building and its impacts on the occupants and cleaning personnel.4.1.1 This guide provides a basic reference for the development and preservation of a building environment that is considered safe and healthy for occupants, while reducing the stress on the overall environment as a result of routine maintenance. The anticipated users of this guide include building managers, cleaning personnel, product suppliers and distributors, union representatives, and building occupants who serve together in a stewardship role regarding the maintenance of the building. This guide is intended to raise pertinent questions regarding specific building environments in order that an appropriate stewardship strategy may be developed, for example:4.1.1.1 How is the building used?4.1.1.2 Are there any special cleaning requirements?4.1.1.3 Are there any at-risk populations that need to be considered, such as children, asthmatics, or pregnant woman?4.1.1.4 How are cleaning materials used?4.1.1.5 Are there any special issues relevant to construction and furnishings?4.1.1.6 Are there any issues relating to building age/architectural, such as historic preservation requirements?4.1.1.7 are there any engineering concerns, such as HVAC systems and natural ventilation?4.1.1.8 How is the quality of cleaning being evaluated or measured?4.1.2 Regardless of the specific requirements, this guide will help in the formulation of a comprehensive plan resulting in reduced risk to cleaning personnel, building occupants, and the environment.4.2 This guide will help the building owner and operator understand the cleaning process through the following:4.2.1 The development of a stewardship plan (see Section 6), will clarify the level of cleanliness that is required or expected, and will ensure that the cleaning process is carried out in a consistent manner with adequate communication feedback to promote success of the plan.4.2.2 An understanding of extended product responsibility (see Section 7) and the importance of shared responsibility. This section includes task identification and performance requirements, process and product selection, use, storage, and disposal.4.2.3 An identification of the training and communications issues (see Section 8) that will encourage involvement with the entire chain-of-commerce in the cleaning process. These issues are related to both procedural training and feedback opportunities for cleaning personnel, as well as information sharing with building tenants to inform them of possible cleaning process impacts.1.1 This guide covers a procedure to assist owners and operators of commercial and institutional buildings in the stewardship of cleaning and housekeeping operations. The focus of this guide is to address appropriate cleaning activities and processes, to promote eco-efficiency and sustainability, and to avoid adverse impacts on the building occupants, cleaning personnel, the building structure itself, and the environment. Adherence to the principles set forth in this guide can lead to greater tenant/occupant satisfaction, reduced operational costs and greater productivity (of occupants and cleaning personnel).1.2 This guide will focus on the development of a stewardship plan and will include the assessment of cleaning processes, product selection, storage, usage, disposal, equipment, training of cleaning personnel and communication throughout the chain-of-commerce.1.3 This guide addresses issues relating to the operation and maintenance of the heating, ventilating and air conditioning (HVAC) systems which can have a major impact on indoor air quality (IAQ) only to the extent that the HVAC system provides adequate ventilation to lower risk to cleaning personnel, building occupants and the environment during or as a result of the cleaning process.1.4 This guide is for use in a building that is maintained by either in-house cleaning personnel or an outside cleaning contractor.1.5 This guide is not intended for construction related activities, but may be appropriate for post construction clean-up.1.6 This guide is not intended as a procedural guide for cleaning personnel.1.7 This guide is not intended for use in residential buildings.1.8 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers a comparative measurement method for impact absorption properties for body padding and protective wear (apparel) for the sport of fencing. The apparel includes fencing mask bibs, underarm protectors or plastrons, padded vests, uniform jackets, knickers or trousers, gloves, and other protection worn to protect against impacts from the fencing weapon's tip (for example, touches) for foil, saber, or epee. The scope of this test method excludes measurement or performance for perforation resistance of the blade, whether in tact or broken. Note 1-This is a simple test method to discriminate between qualities of different padding materials or systems under an impact that simulates the delivery of a fencing touch. It does not purport to measure quantitative impact energy absorption values at thrust sites. Until in-field data become available, this standard allows manufacturers to intercompare padding systems, fabrics, materials, or composites for protective fencing wear for integrity, robustness, and impact attenuation. 1.2 This standard does not purport to address all of the safety problems associated with fencing padding and will not prevent all injuries due to blades impacting fencers. It is the responsibility of the users of the protective padding to establish appropriate safety practices, including maintaining safe fencing distances and care and inspection of the protective wear as well as the blade. Specifically, this standard does not address degradation of the protective padding with use and laundering, or performance of the padding for puncture resistance by thrusts involving in-tact or broken blades. It should be recalled that the sport derives from duelling and is inherently not free of risk of injury or death .

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers zinc and zinc alloy wire used to deposit zinc coatings by thermal spraying (metallizing) for the corrosion protection of steel and iron. Zinc and zinc alloy wire provided under this specification is intended for use in oxy-fuel and electric arc thermal spraying equipment. The zinc used to manufacture the wire shall conform to the requirements for high grade zinc (Z15001) or special high grade zinc (Z13001). The wire shall conform to the chemical requirements for aluminum, cadmium, copper, iron, lead, tin, antimony, silver, bismuth, arsenic, nickel, magnesium, molybdenum, titanium, and zinc. The wire shall be clean and free of corrosion, adhering foreign material, scale, seams, nicks, burrs, bends or kinks which would interfere with the operation of thermal spraying equipment. The wire shall uncoil readily and shall be a continuous length per spool, coil, or drum. Splices or welds are permitted, provided that they do not interfere with the thermal spray equipment or coating process.1.1 This specification covers zinc and zinc alloy wire used to deposit zinc coatings by thermal spraying (metallizing) for the corrosion protection of steel and iron. Zinc and zinc alloy wire provided under this specification is intended for use in oxy-fuel and electric arc thermal spraying equipment. Additional zinc alloy compositions used in thermal spraying primarily for electronic applications are found in Specification B943.1.2 Zinc alloy wire compositions used in thermal spraying primarily for electronic applications are found in Specification B943.1.3 Zinc alloy wire compositions used as solders are found in Specification B907.1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Some insulation materials contain moisture, which will affect the thermal and other physical properties of the insulation.1.1 This test method will determine the moisture content, as a percentage of the dry weight of organic and inorganic insulation materials.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Ash, as determined by this test method, is the residue remaining after burning the coal and coke. Ash obtained differs in composition from the inorganic constituents present in the original coal. Incineration causes an expulsion of all water, the loss of carbon dioxide from carbonates, the conversion of iron pyrites into ferric oxide, and other chemical reactions. Ash, as determined by this test method, will differ in amount from ash produced in furnace operations and other firing systems because incineration conditions influence the chemistry and amount of the ash. References for correcting ash results determined by this test method to a mineral-matter-free basis are listed in Classification D388, Section 9.1.1 This test method covers the determination of the inorganic residue as ash in the analysis sample of coal or coke as prepared in accordance with Practice D2013 or Practice D346. The results obtained can be applied as the ash in the proximate analysis, Practice D3172, and in the ultimate analysis, Practice D3176. For the determination of the constituents in ash, reference is made to Test Methods D3682, D4326, and D6349. Test Methods D6357 should be used to prepare ash to be used for trace element analysis. See Terminology D121 for definition of ash.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These tolerances are applicable to all yarns 59 tex (10.00/1 cotton count) or coarser spun of man-made fiber(s), 4.5 to 30.0 dtex/filament, (4 to 25 denier/filament) and spun on the parallel worsted or modified worsted system. These tolerances do not apply to novelty or fancy yarns spun on the parallel worsted or modified worsted system. Note 1-For tolerances for other spun yarns, see Tolerances D2644, Tolerances D2645, Specification D541, and Specification D681. 1.2 The values stated in SI units are to be regarded as standard; the values in inch-pound units are provided as information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
1536 条记录,每页 15 条,当前第 1 / 103 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页