微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

6.1 This method is considered satisfactory for acceptance grading of commercial shipments because it has been used extensively in the trade for this purpose.6.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use the samples for such a comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.6.2 The appearance of a woven or knitted fabric depends to a large extent on the smoothness, cleanliness, and general appearance of the yarns from which the fabric is manufactured. Instruments are available for the measurement of unevenness and for counting neps and other imperfections in yarn, but the values obtained from such tests are not easily integrated into an over-all expression for actual fabric appearance. Yarn appearance grading affords additional information which the manufacturer of woven or knitted goods may, through experience, correlate with the appearance to be expected in fabrics made from the yarns.1.1 This test method covers the grading of singles spun yarns for appearance.1.2 This test method does not apply to plied yarns.1.3 The values stated in either inch-pound or SI units are to be regarded separately as the standard. The values stated in each system are not exact equivalents, therefore, each system must be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.21.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Acceptance Testing—Option A1 of Test Method D2256 is considered satisfactory for acceptance testing of commercial shipments because the test method has been used extensively in the trade for acceptance testing. However, this statement is not applicable to knot and loop breaking force tests, tests on wet specimens, tests on oven-dried specimens, or tests on specimens exposed to low or high temperatures and should be used with caution for acceptance testing because factual information on between-laboratory precision and bias is not available.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use the samples for such a comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 Fundamental Properties—The breaking tenacity, calculated from the breaking force and the linear density, and the elongation are fundamental properties that are widely used to establish limitations on yarn processing or conversion and on their end-use applications. Initial modulus is a measure of the resistance of the yarn to extension at forces below the yield point. The chord modulus is used to estimate the resistance to imposed strain. The breaking toughness is a measure of the work necessary to break the yarn.5.3 Comparison to Skein Testing—The single-strand method gives a more accurate measure of breaking force present in the material than does the skein method and uses less material. The skein-breaking force is always lower than the sum of the breaking forces of the same number of ends broken individually.5.4 Applicability—Most yarns can be tested by this test method. Some modification of clamping techniques may be necessary for a given yarn depending upon its structure and composition. To prevent slippage in the clamps or damage as a result of being gripped in the clamps, special clamping adaptations may be necessary with high modulus yarns made from fibers such as glass or extended chain polyolefin. Specimen clamping may be modified as required at the discretion of the individual laboratory providing a representative force-elongation curve is obtained. In any event, the procedure described in this test method for obtaining tensile properties must be maintained.5.5 Breaking Strength—The breaking strength of a yarn influences the breaking strength of fabrics made from the yarn, although the breaking strength of a fabric also depends on its construction and may be affected by manufacturing operations.5.5.1 Because breaking strength for any fiber-type is approximately proportional to linear density, strands of different sizes can be compared by converting the observed breaking strength to breaking tenacity (centinewtons per tex, grams-force per tex, or grams-force per denier).5.6 Elongation—The elongation of a yarn has an influence on the manufacturing process and the products made. It provides an indication of the likely stretch behavior of garment areas such as knees, elbows, or other points of stress. It also provides design criteria for stretch behavior of yarns or cords used as reinforcement for items such as plastic products, hose, and tires.5.7 Force-Elongation Curve—Force-elongation curves permit the calculation of various values, not all of which are discussed in this test method, such as elongation at break, elongation at specified force, force at specified elongation, initial elastic modulus which is resistance to stretching, compliance which is ability to yield under stress, and is the reciprocal of the elastic modulus, and area under the curve, a measure of toughness, which is proportional to the work done.NOTE 3: Force-elongation curves can be converted to stress-strain curves if the force is converted to unit stress, such as to centinewtons per tex, or pounds per square inch, or pascals, or grams-force per tex, or grams-force per denier, and the elongation is based on change per unit length.5.8 Knot and Loop Breaking Force—The reduction in breaking force due to the presence of a knot or loop is considered a measure of the brittleness of the yarn. Elongation in knot or loop tests is not known to have any significance and is not usually reported.5.9 Rate of Operation—In general, the breaking force decreases slightly as time-to-break increases.5.9.1 Operation of CRT, CRE, and CRL tension testing machines at a constant time-to-break has been found to minimize differences in test results between the three types of tension testing machines. When tensile tests are performed at a fixed time-to-break, then reasonable agreement in breaking force has generally been found to exist between CRT and CRE tension testing machines.4 Consistent results are also obtained between different manufacturers of CRL tension testing machines when they are operated at the same time-to-break. The agreement is not necessarily good, however, between CRE or CRT tension testing machines on the one hand and CRL tension testing machines on the other even when they are all operated at the same time-to-break. The CRE-type tester is the preferred tension testing machine.5.9.2 This test method specifies an average time-to-break of 20 ± 3 s as recommended by Specification D76/D76M. It also provides for alternate speeds, such as 300 ± 10 mm [12 ± 0.5 in.]/min when using a 250-mm [10-in.] gauge length. See 9.2.5.9.3 The tolerance of ±3 s for the time-to-break is wide enough to permit convenient adjustment of the tension testing machine's rate of operation, and it is narrow enough to ensure good agreement between tests. The difference in breaking force between tests at 17 and 23 s will usually not exceed 1.5 % of the higher value.5.9.4 In case a tension testing machine is not capable of being operated at 20-s time-to-break, alternative rates of operation are included in this test method. These alternative rates may be used only by agreement between the parties concerned or when required in an applicable material specification.5.10 Tests on Wet Specimens—Tests on wet specimens are usually made only on yarns which show a loss of breaking force when wet or when exposed to high humidity, for example, yarns made from animal fibers and man-made fibers based on regenerated and modified cellulose. Wet tests are made on flax yarns to detect adulteration by failure to show a gain in breaking force.5.11 Tests on Oven-Dried Specimens and Specimens at High Temperatures—Tests on oven-dried specimens at standard or high temperatures are usually made only on yarns that will be used at high temperatures or will be used under very dry conditions which will affect the observed breaking force, for example, on rayon yarns intended for use in tire cords and yarns for other industrial purposes. Note that results obtained when testing oven-dried specimens at standard temperature will not necessarily agree with the results obtained when testing oven-dried yarns at high temperatures.5.12 Tests on Specimens at Low Temperatures—Tests on specimens exposed to low temperatures are usually made only on yarns that will be used at low temperatures, for example, yarns used in outerwear designed for cold climates or outer-space situations. Low-temperature tests are made on coated yarns used in the manufacture of materials used in outdoor applications, such as screening fabrics.1.1 This test method covers the determination of tensile properties of monofilament, multifilament, and spun yarns, either single, plied, or cabled with the exception of yarns that stretch more than 5.0 % when tension is increased from 0.05 to 1.0 cN/tex [0.5 to 1.0 gf/tex].1.2 This test method covers the measurement of breaking force and elongation of yarns and includes directions for the calculation of breaking tenacity, initial modulus, chord modulus, and breaking toughness.1.2.1 Options are included for the testing of specimens in: (A) straight, (B) knotted, and (C) looped form.1.2.2 Conditions of test are included for the testing of specimens that are: (1) conditioned air, (2) wet, not immersed, (3) wet, immersed, (4) oven-dried, (5) exposed to elevated temperature, or (6) exposed to low temperature.NOTE 1: Special methods for testing yarns made from specific fibers; namely, glass, flax, hemp, ramie, and kraft paper and for specific products; namely, tire cords and rope, have been published: Test Methods D885, and Specification D578.NOTE 2: For directions covering the determination of breaking force of yarn by the skein method refer to Test Method D1578.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D2259-21 Standard Test Method for Shrinkage of Yarns Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Test Method D2259 for testing yarn for shrinkage in boiling water, saturated steam, dry heat, or solvents is considered satisfactory for acceptance testing of commercial shipments of yarn because the test method has been used extensively in the trade for that purpose.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use the samples for such comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 Results obtained by this test method can be used for the following purposes:5.2.1 As an aid in predicting the dimensional stability of fabrics to wet processing,5.2.2 As an aid in predicting the dimensional stability of fabrics during processing at elevated temperatures, and5.2.3 As a control measure in the manufacture of some types of fibers.5.3 The shrinkage medium to be used in the test depends on the requirements of the parties involved.5.4 The procedure for shrinkage in boiling water is described in Section 12, for shrinkage in dry heat in Section 13, for shrinkage in saturated steam in Section 14, and for shrinkage in solvents in Section 15. A 30-min exposure time is prescribed for boiling water. In exposure to dry heat, saturated steam, or solvents, the extent of change in the length of yarn is dependent upon the fiber type and upon the time and temperature of the exposure. Fiber types differ in their reaction to elevated temperature as well as the nature of the specific solvent, and prior fiber history can have a great influence upon the heat and solvent shrinkage of a yarn. Therefore, the time and temperature conditions to be used to determine dry heat or saturated steam shrinkage must be agreed upon for the particular product involved. In addition, time and temperature conditions, and solvent to be used must be agreed upon for solvent shrinkage determination for the particular product involved.1.1 This test method is used to determine the shrinkage of yarns in skein form when treated in boiling water, dry heat, saturated steam, or solvents. This test method is applicable to yarns made from any fiber or combination of fibers where the tex of the yarn is known or can be determined. This test method is not recommended for elastomeric yarns and those yarns that stretch more than 5 % under the tension loadings prescribed, although it has been used for the latter.NOTE 1: Procedures for determining yarn shrinkage and bulk properties of textured yarns are covered in Test Method D4031.1.2 This test method shows the values in both SI and inch-pound units. “SI” units is the technically correct name for the system of metric units known as the International System of Units. “Inch-pound” units is the technically correct name for the customary units used in the United States. The values stated in either SI units or in other units shall be regarded as standard. The values expressed in each system may not be exact equivalents; therefore each system must be used independently of the other without combining in any way.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is considered satisfactory for acceptance testing of commercial shipments since current estimates of between-laboratory precision are acceptable and the method is used extensively in the trade for acceptance testing.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use samples for such comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The force at first filament break of elastomeric yarns may depend on its construction and manufacturing process and provides an indication of the breaking strength of fabrics made from the yarn.5.3 Elongation is an indication of the ability of a fiber to absorb energy. The elongation of yarn or fabric must be great enough to withstand strains experienced in processing and end use, and to absorb the energies of applied forces repeatedly.5.4 Fabric manufacturers use force and elongation information of elastomeric yarns in determining machine set-up conditions.5.5 Other parameters such as elongation at specified force (EASF), force (or tenacity) at specified elongation (FASE, TASE), work and toughness may be calculated from force-elongation curves. EASF and FASE information is needed for tests involving cycling of yarn in determination of elastic properties.5.6 This test method was developed using elastomeric yarns in the “as-produced” condition, but may be used for treated elastomeric yarns provided the treatment is specified. The method does not cover the removal of finish for determination of tensile properties of “finish-free” elastomeric yarns.1.1 This test method covers the determination of the tensile properties of “as produced” elastomeric yarns made from natural rubber, spandex or other elastomers, using a constant-rate-of-extension (CRE) type tensile testing machine. The properties included in this test method are: (1) force at first filament break, (2) tenacity at first filament break, (3) elongation at first filament break, (4) work to break at first filament break, and (5) toughness at first filament break.1.2 This test method does not apply to covered, wrapped, or core-spun yarns or yarns spun from elastomeric staple.1.3 This test method is applicable to elastomeric yarns in the range from 40 to 3200 dtex (36 to 2900 denier).1.4 The values stated in either SI units or U.S. Customary units are to be regarded separately as standard. Within the text, the U.S. Customary units are given in parentheses. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used for acceptance testing in the trade for economic reasons even though it is less accurate than the direct method, Test Method D1423.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if their is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results are obtained, and that are assigned randomly in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The “setting” of twist in some fibers causes excessive contraction when the yarn is retwisted in the reverse direction. Therefore, the number of turns required to bring the specimen back to its original length may be less than the number of turns removed in untwisting. This effect may be partially offset by the use of higher pretensioning loads; but this increases the danger of stretching the yarn. Little information is available on the correct tensions to use for yarns made from different fibers or with different amounts of twist.5.3 In addition to being less tedious, this test method requires fewer specimens than the direct-counting method and the results may be sufficiently accurate for certain purposes. This test method can be useful in those cases where the main objective is to measure variations from an average value. Another possible application is where a large amount of twist testing is required on yarns of similar type and twist. In this case preliminary tests comparing this method and the direct method could be used to determine the correct pretension.5.4 Twist has important effects on the physical properties of yarn. Low-twist yarn is lofty and is usually preferred for knitting because of its softness, covering power, and warmth. Increasing the amount of twist causes an increase in yarn strength by increasing fiber cohesion, but as the twist angle increases beyond an optimum point, strength decreases due to a loss in effective fiber contribution. Maximum yarn strength is obtained by inserting a medium amount of twist to obtain an optimum balance between these two opposing forces. High twist produces yarns of high density (“hard” or “wiry”) and high elongation and may improve the abrasion and impact resistance of fabrics.5.5 The optimum twist for either manufacturing efficiency or physical properties usually increases as staple length decreases.5.6 The twist in a yarn before it is packaged may be different from that of the yarn after it has been withdrawn from the package because of changes in tension and the effect of the method of withdrawal. Withdraw the yarn from the package in the direction of normal use, either from the side or over-end. If the yarn is withdrawn over-end, a slight increase or decrease in twist will take place, depending upon the direction of the twist in the yarn, the direction of winding on the package, and the length of the turn (or wrap) on the package.NOTE 2: The difference in twist between unwinding from the side and over-end is 1/πd, where d is the diameter of the package.4 Thus, for a 25-mm [1-in.] diameter package, the difference would be about 13 tpm or about one third tpi.5.7 When a yarn is taken from a more complex yarn structure or from a fabric, the resultant twist should be considered only an approximation of the original value because of alterations that may have occurred as a result of the effects of unwinding, handling, and mechanical strains met in processing.1.1 This test method2 describes the determination of twist in single spun yarns when only an approximation of the true twist is required.NOTE 1: For a more accurate method see Test Method D1423.1.2 This test method is applicable to spun single yarns in continuous lengths, and also to spun yarns raveled from fabrics, provided specimens at least 200 mm [8 in.] long can be obtained.1.3 This test method has been found satisfactory for use in determining the approximate twist content in single ring spun yarns of all types and fiber contents, but not in open-end spun yarns.1.4 This specification shows the values in both inch-pound units and SI units. The “inch-pound” units is the technically correct name for the customary units used in the United States. The “SI” units is the technically corrected name for the system of metric units known as the International System of Units. The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method D1423 for testing twist in yarns by direct-counting is considered satisfactory for acceptance testing of commercial shipments because current estimates of between-laboratory precision are acceptable and the method has been used extensively in the trade for acceptance testing.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum use the samples for such comparative tests as homogeneous as possible, drawn from the same lot of material that resulted in the disparate test results and randomly in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The determination of twist in a straight section of a yarn is not the simple straightforward operation it appears to be, for the test results may be greatly influenced by variations in test procedures and techniques. In all manipulations, extreme care is necessary to prevent specimen rotation altering the twist level before testing begins.5.3 The twist in a yarn before it is packaged may be different from that of the yarn after it has been withdrawn from the package because of changes in tension and the effect of the method of withdrawal. If the yarn is withdrawn over-end, a slight increase or decrease in twist will take place, depending upon the direction of the twist in the yarn, the direction of winding on the package, and the length of the wrap on the package.5.4 When a yarn is incorporated into or removed from a more complex structure, alterations may occur as a result of the plying, untwisting, or raveling operation. For example, when determining the twist in plied yarn by the procedure for determining original twist, as the plied yarn is untwisted, a comparable amount of twist is reinserted in, or removed from, the single-yarn components. As a consequence, the single yarns have approximately the original twist prior to the plying operation but not the twist they have when they are functioning as components of the plied yarn. The latter or final twist may be estimated by adding the ply twist to (or subtracting it from) the single-yarn twist depending on the directions of the ply and singles twist. For a more precise determination, the test procedure must be modified. There are thus two different procedures for preparing specimens of the component elements of a plied or cabled yarn for twist determination. The procedure for the original twist measures the twist in a component of a complex strand after the components have been untwisted. The procedure for final twist measures the twist in a component as it lies in the complex strand. Although the original twist procedure is most often used, selection of a particular procedure will depend on the type of information needed.NOTE 3: The difference in twist between unwinding from the side and over-end is 1/πd, where d is the diameter of the package.3 Thus, for a 25 mm [1-in.] diameter package, the difference would be about 13 tpm or about 1/3 tpi.5.5 When a yarn is taken from a more complex yarn structure or from a fabric, the resultant twist should be considered only an approximation of the original value because of alterations that may have occurred as a result of the effects of unwinding, handling, and mechanical strains met in processing.5.6 The optimum amount of twist depends upon the use for which the yarn is intended. The amount of twist affects both the strength and elongation properties of the yarn with increased twist being associated with increased elongation. The relationship between twist and strength is more complex.5.6.1 In filament yarns, some twist up to 280 tpm [7 tpi] or a suitable sizing is required to facilitate textile operations. A small increase in twist results in a slight increase in strength, but a further increase results in a loss in strength. However, higher twist in such yarns may be used to subdue luster or increase elongation, or to secure other special effects, as in crepe fabrics.5.6.2 In conventional ring spun yarns a certain minimum amount of twist is necessary to bind or hold the individual fibers together to produce a useful yarn. A limited increase in twist will result in an increase in strength until the critical twist level for the particular yarn involved has been reached, but further increase in twist results in a loss in strength.5.7 The same amount of twist in yarns of different sizes (diameter) will produce yarns with different degrees of compactness, twist character, and twist angles. The twist multiplier or twist factor is approximately proportional to the tangent of the angle that the surface fibers make with the axis of the yarn. Therefore, the greater the angle, the greater the twist multiplier. A constant twist multiplier indicates comparable compactness and degree of liveliness in yarns of different sizes and conversely a difference in twist multiplier indicates a difference in compactness in yarns of the same size. Yarns intended for different uses are frequently made with different twist multipliers, for example, warp yarns and filling yarns.5.8 Different cabling processes will influence the calculation of twist from single component twist measurement. The length of cabled yarn before untwisting is used for the calculation of twist for single components using direct cabling technology. In case of 2 or more step twist technology the length of the cabled yarn after untwisting is used for calculation of the twist level in the single yarn components.5.9 Twist multiplier and twist factor are a measure of the “twist hardness” of spun yarn because they are approximately proportional to the tangent of the angle between fibers on the outer yarn surface and the axis of the spun yarn; the larger this angle, the harder the twist. Furthermore, this angle is a function of both the twist content (turns per unit length) and the number of fibers per yarn cross section (yarn number). Hence, twist content alone cannot provide a measure of the twist hardness of a yarn.1.1 This test method covers the determination of the amount and direction of twist at the completion of any stage of twisting in single (spun or filament), plied, cabled, or novelty (exclusive of long-term repeat patterns) yarns. The procedures are designed primarily for yarns in packages, but, with special precautions, they are applicable to yarns taken from fabrics. The procedure for spun yarn in 9.2 is also applicable to rovings.1.2 For plied yarns, this test method covers the determination of the twist of the plied yarns and the twist of the single yarn before plying. For cabled yarns, the test method covers the determination of the cable or hawser twist; the twist of the plied yarn after plying, but prior to the last twisting operation; and the twist of the single yarn before plying. Procedures are also included for the determination of the twists of the single and plied yarn components as they lie in the final structure. Also, directions are included for the determination of twist in plied yarn made with direct cabling technology.1.3 This test method is not intended for yarns that extend more than 5.0 % when tension is increased from 2.5 to 7.5 mN/tex [0.25 to 0.75 gf/tex]. Following the procedures of this test method for such yarns would be independent of the bias and precision determined for this test method. The report from such testing should include the tension used for this testing.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.NOTE 1: For a more rapid but less accurate method of determining twist in single spun yarns, refer to Test Method D1422.NOTE 2: This test method has been evaluated for use in determining twist in open end yarns and is not recommended.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method can be used for manufacturing quality control or manufacturing quality assurance purposes to determine the CEG concentration of PET yarns used in either geogrids or geotextiles.5.2 The CEG content of the PET yarns may have an influence on the properties of the geosynthetic, such as its hydrolysis resistance. The lower the value, the higher the hydrolysis resistance of the yarns.5.3 This test does not set the limiting (maximum) value for various engineering applications. Such a specification is a decision of the design engineer, owner, and/or regulator.1.1 This test procedure is based significantly on the GRI GG7 test procedure, Carboxyl End Group Content of Polyethylene Terephthalate (PET) Yarns.1.2  This test method is used to determine the concentration, in mmol/kg, of carboxyl end groups (CEG) found in poly(ethylene terephthalate) (PET) yarns by titration.1.3 This test is applicable to geogrid yarns that are made from PET resin.NOTE 1: This test is also applicable to high-strength geotextile yarns that are made from PET and are used in reinforcement applications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D2644-12(2018) Standard Tolerances for Yarns Spun on the Woolen System Active 发布日期 :  1970-01-01 实施日期 : 

1.1 These tolerances are applicable to all yarns spun on the woolen system and composed of any fiber or mixture of fibers, even though there might not be any wool present in the yarn.NOTE 1: For tolerances for other spun yarns, see Tolerances D2645 .1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These tolerances are applicable to all yarns spun on the cotton or the worsted system, either carded or combed, and composed of any fiber or mixture of fibers, except cotton tire cords and novelty or fancy yarns.1.2 These tolerances are applicable only to yarns taken from packages, and not to yarns taken from greige or processed fabrics.NOTE 1: For tolerances for other spun yarns, see Tolerances D2644, Methods D179 and D738, and Specifications D541 and D681.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is considered satisfactory for the acceptance testing of commercial shipments of tire fabrics since this test method has been used extensively in the trade for acceptance testing. This test method is also considered satisfactory for quality control.5.1.1 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories may be compared using appropriate statistical analysis and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.5.2 This test method is applicable for testing the air permeability of any fabric that is embedded in a rubber compound, but is particularly useful when testing chafer fabrics to be used in a tubeless tire construction. In tubeless tires, chafer fabric yarns that are air permeable represent potential channels for air to pass through, and thus, this test method provides a prediction of chafer permeability.5.3 Evaluation of air permeability in other fabric and cord components in such products as tires, rubber brake diaphragms, and pneumatic hoses, is useful.1.1 This test method covers the determination of longitudinal air permeability for tire fabrics, tire cord fabrics, tire cords, or yarns embedded in cured rubber compound. This test method is designed to demonstrate the effectiveness of fabric treatments intended to prevent air permeability. This test method is applicable to fabrics made from all types of fibers with all types of rubber compound.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See the Note in 11.1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D3374/D3374M-14 Standard Specification for Vinyl-Coated Glass Yarns (Withdrawn 2023) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This specification covers vinyl-coated glass yarns. These yarns are manufactured in two basic classes. These classes have been established that when properly woven into screening, satisfactory strength, durability, and insect protection are obtained. The two classes are as follows:1.1.1 Class 1—Nominal thickness 0.292 mm [0.0115 in.].1.1.2 Class 2—Nominal thickness 0.330 mm [0.0130 in.].1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 The following precautionary statement pertains only to the test method portions, Sections 12–21, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The values obtained by this test method should not be used to predict similar properties in fabricated structures except in narrow well-defined comparisons, such as 16.7 tex (150-denier) polyester from the same feed yarn merge and textured on the same machine type. Attempts to relate yarn performance to fabric performance might result in poor correlations unless other factors affecting bulk such as yarn shrinkage and fabric finishing are eliminated.5.2 Elapsed time between processing and testing has a marked effect on the results of this test especially during the first 72 h. Therefore, specimens should only be compared if tested after the same elapsed time. This effect is caused by stress decay which is known to be minimal beyond the seventh day and after which time the sample remains relatively stable. Comparisons are preferably made after the seventh day.5.3 In the case of yarns having a linear density near the upper limit of the skein size directed in Table 3, an error is introduced when rounding off to full revolutions. Therefore, the calculated values for crimp contraction, etc., should only be compared with other samples of yarn of the same linear density.(A) See Eq 2, and Note 1.(B) 100 Revolutions, linear density of skein varies.5.4 Option A used with crimp development Condition 1 (dry heat oven at 120°C (248°F)) and light loads of 0.04 mN/tex (0.5 mgf/den) and 0.44 mN/tex (5.0 mgf/den) are recommended for textured polyester yarns. All crimp parameters may be calculated.5.5 Option B may also be used with crimp development Condition 1 (dry heat) for textured polyester yarns. Crimp contraction may be calculated. When used to duplicate or to utilize suitable mechanical yarn handling devices,3 alternate skein size and weights may be used as described in 6.5.2 and 9.3.2.5.6 Option C used with crimp development Condition 2 (water bath at 82°C (180°F)) and a light load of 0.13 mN/tex (1.5 mgf/den) is recommended for textured nylon yarns. For textured polyester yarns, Condition 3 (water bath at 97°C (206°F)) is recommended. Only bulk shrinkage is calculated.5.7 This test method for the measurement of bulk properties is not recommended for acceptance testing of commercial shipments because of lack of precision data.5.7.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.1.1 This test method covers the measurement of the change in length of a tensioned skein of textured yarn due to change in crimp characteristics brought about by exposure to wet or dry heat. The change in length, depending on procedure, is a measure of skein shrinkage, crimp contraction, bulk shrinkage, or crimp recovery.1.2 This test method applies to crimped, continuous multifilament yarns ranging from 1.7 to 88.9 tex (15 to 800 denier).1.3 Three conditions are provided for crimp development mediums, and loading routines are provided to be used on the yarn skeins to allow determination of yarn bulk by several different procedures.1.4 The values stated in either SI units or inch-pound units are to be regarded as standard. Within the text, the inch-pound units are shown in parentheses. The values stated in each system are not exact equivalent; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 For application areas such as optical fiber and cable reinforcements, aramid is usually used in a linear – not twisted – form. For designing constructions like this, it is essential to use data based on a specimen without twist applied.5.1.1 The modulus and FASE of twisted yarns demonstrate reduced values when compared to p-aramid flat yarns.5.1.2 Use Test Method D7269 for testing of twisted p-aramid yarns.5.2 The levels of tensile properties obtained when testing aramid yarns are dependent on the age and history of the specimen and on the specific conditions used during the test. Among these conditions are rate of stretching, type of clamps, gauge length of specimen, temperature and humidity of the atmosphere, rate of airflow across the specimen, and temperature and moisture content of the specimen. Testing conditions accordingly are specified precisely to obtain reproducible test results on a specific sample.5.3 FASE (Force At Specified Elongation) describes the absolute resistance of the p-aramid flat yarn to an imposed elongation.5.4 Modulus is a measure of resistance of yarn or cord to extension as a force is applied. It is useful for estimating the response of a textile reinforced structure to the application of varying forces and rates of stretching. Although modulus may be determined at any specified force, initial modulus is the value most commonly used.5.5 Shape, size, and internal construction of the end-product can have appreciable effect on product performance. It is not possible, therefore, to evaluate the performance of end product in terms of the reinforcing material alone.5.6 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.1.1 These test methods cover the tensile testing of para-aramid flat yarns. The methods include testing procedure only and include no specifications or tolerances.1.2 This standard includes the following test methods:  SectionLinear Density 10Force at Specified Elongation (FASE) 11Modulus 111.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method D3106 for testing permanent deformation of elastomeric yarns is considered satisfactory for acceptance testing of commercial shipments when there is prior agreement as to the exact value of elongation to be used for testing, since current estimates of between-laboratory precision are acceptable.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more) comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 Yarns are subjected to long periods of tension resulting in an appreciable amount of stretch during normal use. A portion of the induced stretch may be permanent. The amount of permanent deformation is influenced by the amount of tension, the time the yarn is under tension and the time available for recovery between successive uses.5.3 For optimum processing of elastomeric yarns, the permanent deformation value should be low or zero.1.1 This test method covers the determination of the permanent deformation of bare, continuous elastomeric monofilaments and filament yarns made from rubber, spandex, anidex, or other elastomers subjected to prolonged periods of tension. This test method is applicable to elastomeric yarns having a linear density in the range from 4 to 320 tex (36 to 2900 den.).1.2 This test method is not applicable to covered, wrapped, core-spun yarns, or yarns spun from elastomeric staple.1.3 This test method was developed using yarns in the “as-received” condition, but may be used for treated yarns provided the treatment is specified.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D4849-21 Standard Terminology Related to Yarns and Fibers Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This standard is a compilation of terminology developed by Committee D13.58 on Yarns and Fibers.1.1.1 This terminology, mostly definitions, is unique to fibers and yarns used in the textile industry. Terms that are generally understood or adequately defined in other readily available sources are not included.1.1.2 Subcommittee D13.58 has jurisdictional responsibility for every item in this standard. The standards in which the terms and definitions are used are listed by number after the definition. The wording of an entry cannot be changed without the approval of 13.58 subcommittee. Any changes approved by the subcommittee and main committee are then directed to subcommittee D13.92 on Terminology for subsequent changes or additions to Terminology D123.1.1.3 This terminology standard is not all inclusive of the terms under the jurisdiction of Subcommittee D13.58. Other terminology standards under the jurisdiction of Subcommittee D13.58 are D3888, D4466, and D4848.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
37 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页