微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The best uses of this guide are to measure the OINR and the AOITL(θ) or OITL(θ) at specific angles of incidence. By measuring the AOITL(θ) or OITL(θ) at several loudspeaker sound incidence angles, by energy-averaging the receiving room sound levels before computing results, an approximation of the diffuse field results measured with Test Methods E90 and E336 may be obtained.5.2 The traffic noise method is to be used only for OINR measurements and is most suitable for situations where the OINR of a specimen at a specific location is exposed to an existing traffic noise source.5.3 The OINR, AOITL(θ), and OITL(θ) produced by the methods described will not correspond to the transmission loss and noise reduction measured by Test Methods E90 and E336 because of the different incident sound fields that exist in the outdoors (1)4. All of these results are a function of the angle of incidence of the sound for two reasons.5.3.1 The transmission loss is strongly influenced by the coincidence effect where the frequency and projected wavelength of sound incident at angle, θ, coincides with the wavelength of a bending wave of the same frequency in the panel (2, 3, 4, 5). This frequency and the angle of least transmission loss (greatest transparency) both depend on specimen panel stiffness, damping and area mass. In diffuse-field testing as in the laboratory, the effect is a weakness at the diffuse field average coincidence frequency that is dependent on material and thickness, often seen around the frequency of 2500 Hz for drywall and glass specimens. Thick wood panels, such as doors, and masonry wall exhibit lower coincident frequencies while thinner sheet steel exhibits higher coincidence frequencies. For free field sound coming from one direction only, the coincidence frequency varies with incidence angle and will differ from the diffuse-field value (5). Near or at grazing (θ close to 90°) it will be much lower in frequency than the diffuse field (E90 and E336) value, and will increase with reducing θ to be considerably above the diffuse-field frequency when θ is 30° or less.5.3.2 The OINR is influenced by the angle of incidence of free field sound coming from a specific angle as compared to a diffuse field. This is because the intensity of free field sound incident across the specimen surface S is reduced by cos(θ) when the sound is not incident normal to the surface. Additionally, when the sound of level L arrives as a free-field from one direction only, and that is normal to the surface, the resulting sound intensity in this direction is 4 times that due to diffuse-field sound of the same level, L. These factors are reflected by the cos(θ) and 6 dB terms in Eq 6.5.3.3 The methods in this guide should not be used as a substitute for laboratory testing in accordance with Test Method E90.5.4 Of the three methods cited for measuring the outdoor sound field from a loudspeaker, the calibrated loudspeaker and flush methods are most repeatable. The near method is used only when neither the calibrated speaker nor the flush method are feasible.5.5 Flanking transmission or unusual field conditions could render the determination of OITL(θ) difficult or meaningless. Where the auxiliary tests described in Annex A1 cannot be satisfied, only the OINR and the AOITL(θ) are valid.5.6 When a room has multiple surfaces exposed to outdoor sound, testing with just one surface exposed to test sound will result in a greater OINR than when all surfaces are exposed to test sound. The difference is negligible when the OITC of the unexposed surface is at least 10 greater than the OITC of the exposed surface.1.1 This guide may be used to determine the outdoor-indoor noise reduction (OINR), which is the difference in sound pressure level between the free-field level outdoors in the absence of the structure and the resulting sound pressure level in a room. Either a loudspeaker or existing traffic noise or aircraft noise can be used as the source. The outdoor sound field geometry must be described and calculations must account for the way the outdoor level is measured. These results are used with Classification E1332 to calculate the single number rating outdoor-indoor noise isolation class, OINIC. Both OINR and OINIC can vary with outdoor sound incidence angle.1.2 Under controlled circumstances where a single façade is exposed to the outdoor sound, or a façade element such as a door or window has much lower transmission loss than the rest of the façade, an outdoor-indoor transmission loss, OITL(θ), or apparent outdoor-indoor transmission loss, AOITL(θ), may be measured using a loudspeaker source. These results are a function of the angle of incidence of the sound field. By measuring with sound incident at many angles, an approximation to the diffuse field transmission loss as measured between two rooms can be obtained. The results may be used to predict interior sound levels in installations similar to that tested when exposed to an outdoor sound field similar to that used during the measurement. The single number ratings of apparent outdoor-indoor transmission class, AOITC(θ), using AOITL(θ) and field outdoor-indoor transmission class, FOITC(θ), using OITL(θ) may be calculated using Classification E1332. These ratings also may be calculated with the data obtained from receiving room sound pressure measurements performed at several incidence angles as discussed in 8.6.1.3 To cope with the variety of outdoor incident sound field geometries that are encountered in the field, six testing techniques are presented. These techniques and their general applicability are summarized in Table 1 and Figs. 1-6. The room, façade, or façade element declared to be under test is referred to as the specimen.FIG. 1 Geometry—Calibrated Source MethodFIG. 2 Geometry—Nearby Average MethodFIG. 3 Geometry—Flush MethodFIG. 4 Geometry—Equivalent Distance MethodFIG. 5 Geometry—2 m (79 in.) Position MethodFIG. 6 Geometry and Formulas—Line Source Flush Method1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

2.1 The contributions that an effective remote sensing system can make are:2.1.1 Provide a strategic picture of the overall spill,2.1.2 Assist in detection of slicks when they are not visible by persons operating at, or near, the water's surface or at night,2.1.3 Provide location of slicks containing the most oil,2.1.4 Provide input for the operational deployment of equipment,2.1.5 Extend the hours of clean-up operations to include darkness and poor visibility,2.1.6 Identify oceanographic and geographic features toward which the oil may migrate,2.1.7 Locate unreported oil-on-water,2.1.8 Collect evidence linking oil-on-water to its source,2.1.9 Help reduce the time and effort for long range planning,2.1.10 A log, or time history, of the spill can be compiled from successive data runs, and2.1.11 A source of initial input for predictive models and for “truthing” or updating them over time.1.1 This guide provides information and criteria for selection of remote sensing systems for the detection and monitoring of oil on water.1.2 This guide applies to the remote sensing of oil-on-water involving a variety of sensing devices used alone or in combination. The sensors may be mounted on vessels, in helicopters, fixed-wing aircraft, unmanned aerial vehicles (UAVs), drones, or aerostats. Excluded are situations where the aircraft are used solely as a telemetry or visual observation platform and exo-atmosphere or satellite systems.1.3 The context of sensor use is addressed to the extent it has a bearing on their selection and utility for certain missions or objectives.1.4 This guide is generally applicable for all types of crude oils and most petroleum products, under a variety of marine or fresh water situations.1.5 Many sensors exhibit limitations with respect to discriminating the target substances under certain states of weathering, lighting, wind and sea, or in certain settings.1.6 This guide gives information for evaluating the capability of a remote surveillance technology to locate, determine the areal extent, as well as measure or approximate characteristics of oil spilled upon water.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 Remote sensing of oil-on-water involves a number of safety issues associated with the modification of aircraft and their operation, particularly at low altitudes. Also, in some instances, hazardous materials or conditions (for example, certain gases, high voltages, etc.) can be involved. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 This practice is intended for the collection of airborne particles on agar plates using inertial impaction for the purpose of culturing fungi or bacteria.4.2 This practice is valuable when species level identification or quantity of culturable aerosolized fungi and bacteria are important factors for the indoor air quality investigation.4.3 It is the responsibility of the user to assure that they are in compliance with all local, state, and federal regulations governing the inspection of buildings for fungal and bacterial colonization and the collection of associated samples.4.4 This practice is intended to provide the user with a basic understanding of the equipment, materials, and instructions necessary to effectively collect air samples on agar plates using an inertial impactor.4.5 This practice is intended to minimize systematic sampling variations between different data sets.1.1 The purpose of this practice is to describe procedures for the collection of culturable airborne fungal spores or fragments or bacteria on agar plates using inertial impaction sampling techniques.1.2 This practice does not include collection of culturable fungi or bacteria by devices not using agar plates.1.3 This practice presumes that the user has a fundamental understanding of field investigative techniques related to the scientific process, and sampling plan development and implementation. It is important to establish the related hypothesis to be tested and the supporting analytical methodology needed in order to identify the sampling media to be used and the laboratory conditions for analysis.1.4 This practice does not address the development of a formal hypothesis or the establishment of appropriate and defensible investigation and sampling objectives. It is presumed the investigator has the experience and knowledge base to address these issues.1.5 This practice does not provide the user sufficient information to allow for interpretation of the analytical results from sample collection. It is the user's responsibility to seek or obtain the information and knowledge necessary to interpret the sample results reported by the laboratory.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Sound transmission loss as defined in Terminology C634, refers to the response of specimens exposed to a diffuse incident sound field, and this is the test condition approached by this laboratory test method. The test results are therefore most directly relevant to the performance of similar specimens exposed to similar sound fields. They provide, however, a useful general measure of performance for the variety of sound fields to which a partition or element may typically be exposed.5.2 In laboratories designed to satisfy the requirements of this test method, the intent is that only significant path for sound transmission between the rooms is through the test specimen. This is not generally the case in buildings where there are often many other paths for sounds—flanking sound transmission. Consequently sound ratings obtained using this test method do not relate directly to sound isolation in buildings; they represent an upper limit to what would be measured in a field test.5.3 This test method is not intended for field tests. Field tests shall be performed according to Test Method E336.NOTE 2: The comparable quantity measured using Test Method E336 is called the apparent sound transmission loss because of the presence of flanking sound transmission.1.1 This test method covers the laboratory measurement of airborne sound transmission loss of building partitions such as walls of all kinds, operable partitions, floor-ceiling assemblies, doors, windows, roofs, panels, and other space-dividing elements.1.2 Laboratories are designed so the test specimen constitutes the primary sound transmission path between the two test rooms and so approximately diffuse sound fields exist in the rooms.1.3 Laboratory Accreditation—The requirements for accrediting a laboratory for performing this test method are given in Annex A4.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The SCCW may be present in the workplace atmosphere where these materials are manufactured, processed, transported, or used. The test methods discussed in this practice can be used to provide guidance when monitoring airborne concentrations of SCCW in these environments.5.2 Because of their visibility limitations, a significant fraction of the very small thin fibers that are present in some samples may not be detected by PCM or SEM. Therefore, TEM is considered to be the reference technique for the analysis of airborne SCCW. The TEM must be used to determine both fiber count and morphology when samples are from previously uncharacterized workplaces or materials.5.3 Although TEM is the reference technique, PCM or SEM are considered to be the primary screening methods for the analysis of airborne SCCW.5.4 Parallel TEM measurements shall be carried out, at least initially, to provide an index or relative measure of the fraction of total fibers that are seen by PCM or SEM. Only in instances when this percentage has been shown to be at a high and reproducible level may the lower resolution techniques (that is, PCM or SEM) be relied on exclusively.1.1 This practice is intended to assist individuals in the sampling and analysis of single-crystal ceramic whiskers (SCCW), such as silicon carbide and silicon nitride, in the workplace environment. It describes sampling and analytical techniques used to assess the airborne concentration and size distribution of SCCW, which may occur in and around the workplace where these materials are manufactured, processed, transported, or used.1.2 The protocols currently in use for asbestos and other fibrous materials have been used as a guide in developing sampling and analytical procedures for characterizing fibers produced from the manufacture and use of SCCW. The sampling and analysis protocols described here have been written specifically for SCCW, however, they may be appropriate for other man-made mineral fibers (MMMF).1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515 加购物车

在线阅读 收 藏

5.1 Modern offices and other multipurpose buildings commonly have suspended acoustical ceilings installed over room dividing partitions. The test facility prescribed in this test method is useful for providing ceiling attenuation data on the relevant ceiling/partition elements and systems, to ensure that the transmission of sound through the ceiling and plenum space, or through the combination of ceiling, plenum space, and partition systems, provides a suitable degree of acoustical isolation.5.2 This test method is useful for rating and specifying, under standardized conditions, the sound attenuation performance of ceiling materials when mounted in a specified suspension system.5.3 This test method may be useful for selecting a wall-ceiling system for probable compliance with a performance specification for overall sound isolation between rooms. However, the actual field performance may differ significantly, particularly if the field plenum depth is not within the limits specified in this test method or if the plenum space contains large ducts, beams, etc., or both. (See Test Method E336.)5.4 The flexibility inherent in the test facility enables evaluation of the effects of penetrations, induced leakage paths, luminaire, and air diffuser installations and discontinuities in the ceiling suspension system at the partition line, including penetration of the partition into the ceiling plenum. The effect of installing plenum barriers at the partition line may also be investigated.5.5 With the concentration of sound absorbent area offered by a suspended sound absorbent ceiling installed in a room, it is not possible to obtain a good approximation to a diffuse sound field in that room. The plenum dimensions prevent the maintenance of a diffuse sound field above the test specimen. These factors affect the values of the measured ceiling sound attenuation and thus the measurements are not a fundamental property of the ceiling. The test method measures the acoustical properties attainable under the prescribed test conditions, which have been arbitrarily selected. The conditions must be adhered to in every test facility so that the measured results will be consistent. Two methods for obtaining A, the receiving room absorption, are given without preference. One method, known as the steady state method, has been used to obtain an estimate for A in the AMA 1-II-1967 standard. The other method follows the procedures used in Test Methods E90 and C423; justification for the use of this method may be found in reference (1)5. Persons wishing to further investigate the limitations imposed by this test method are advised to read references (2), (3), (4) and (5).5.6 Notwithstanding the above limitations, this type of test method has been used successfully for a number of years to rank order commercial ceiling systems and the test results are commonly used for this purpose.1.1 This test method utilizes a laboratory space so arranged that it simulates a pair of horizontally adjacent small offices or rooms separated by a partition and sharing a common plenum space. The partition either extends to the underside of a common plenum space or penetrates through it. In the prescribed configuration, special design features of the facility ensure that the only significant sound transmission path is by way of the ceiling and the plenum space.1.2 Within the limitations outlined in the significance statement, the primary quantity measured by this test method is the ceiling attenuation of a suspended ceiling installed in a laboratory environment. By accounting for receiving room sound absorption, the normalized ceiling attenuation may be determined.1.3 The test method may also be used to evaluate the attenuation of composite ceiling systems comprised of the ceiling material and other components such as luminaires and ventilating systems.1.4 The field performance of a ceiling system may differ significantly from the results obtained by this test method (see Section 5, , and Test Method E336).1.5 The procedures may also be used to study the additional sound insulation that may be achieved by other attenuation measures. This would include materials used either as plenum barriers or as backing for all or part of the ceiling.1.6 The facility may also be used to study the performance of an integrated system comprising plenum, ceiling, and partition, tested as a single assembly.1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method is used to estimate and categorize the number and type of fungal structures present on an inertial impactor sample.5.2 Fungal structures are identified and quantified regardless of whether they would or would not grow in culture.5.3 It must be emphasized that the detector in this test method is the analyst, and therefore results are subjective, depending on the experience, training, qualification, and mental and optical fatigue of the analyst.1.1 This test method is a procedure that uses direct microscopy to analyze the deposit on an inertial impaction sample.1.2 This test method describes procedures for categorizing and enumerating fungal structures by morphological type. Typically, categories may be as small as genus (for example, Cladosporium) or as large as phylum (for example, basidiospores).1.3 This test method contains two procedures for enumerating fungal structures: one for slit impaction samples and one for circular impaction samples. This test method is applicable for impaction air samples, for which a known volume of air (at a rate as recommended by the manufacturer) has been drawn, and is also applicable for blank impaction samples.1.4 Enumeration results are presented in fungal structures/sample (fs/sample) and fungal structures/m3 (fs/m3).1.5 The range of enumeration results that can be determined with this test method depends on the size of the spores on the sample trace, the amount of particulate matter on the sample trace, the percentage of the sample trace counted, and the volume of air sampled.1.6 This test method addresses only the analysis of samples. The sampling process and interpretation of results is outside the scope of this test method.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The health of workers in many industries is at risk through exposure by inhalation to toxic metals and metalloids. Industrial hygienists and other public health professionals need to determine the effectiveness of measures taken to control workplace exposure. This is generally achieved by making workplace air measurements. This test method has been developed to make available a standard methodology for valid exposure measurements for a wide range of metals and metalloids that are used in industry. It will be of benefit to agencies concerned with health and safety at work; analytical laboratories; industrial hygienists and other public health professionals; industrial users of metals and metalloids and their workers; and other groups.5.2 This test method specifies a generic method for determination of the concentration of metals and metalloids in workplace air samples using ICP-MS. For many metals and metalloids, analysis by ICP-MS may be advantageous, when compared to methods such as ICP atomic emission spectrometry, due to its sensitivity and the presence of fewer spectral interferences.5.3 The analysis results can be used for the assessment of workplace exposures to metals and metalloids in workplace air.1.1 This test method specifies a procedure for sample preparation and analysis of airborne particulate matter for the content of metals and metalloids in workplace air samples using inductively coupled plasma–mass spectrometry (ICP-MS). This test method can be used for other air samples provided the user ensures the validity of the test method (by ensuring that appropriate data quality objectives can be achieved).1.2 This test method assumes that samples will have been collected in accordance with Test Method D7035 with consideration of guidance regarding wall deposits provided in Guide D8358.1.3 This test method should be used by analysts experienced in the use of ICP-MS, the interpretation of spectral and matrix interferences and procedures for their correction.1.4 This test method specifies a number of alternative methods for preparing test solutions from samples of airborne particulate matter. One of the specified sample preparation methods is applicable to the measurement of soluble metal or metalloid compounds. Other specified methods are applicable to the measurement of total metals and metalloids.1.5 It is the user's responsibility to ensure the validity of this test method for samples collected from untested matrices.1.6 Table 1 provides a non-exclusive list of metals and metalloids for which one or more of the sample dissolution methods specified in this document is applicable.1.7 This test method is not applicable to compounds of metals and metalloids that are present in the gaseous or vapor state.1.8 Table 3 provides examples of instrumental detection limits (IDL) that can be achieved with this test method. Table 5 provides examples of method detection limits (MDL) that can be achieved.1.9 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-MS instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This test method contains notes that are explanatory and are not part of the mandatory requirements of the method.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843 加购物车

在线阅读 收 藏
294 条记录,每页 15 条,当前第 4 / 20 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页