4.1 The intent of this practice is to indicate standard welded specimens and welding procedures for evaluating the SCC characteristics of weldments in corrosive environments. The practice does not recommend the specific corrosive media that may be selected by the user depending upon the intent of his investigation. Specific corrosive media are included in Practices G35, G36, G37, and G44. Other environments can be used as required.1.1 This practice covers procedures for the making and utilization of test specimens for the evaluation of weldments in stress-corrosion cracking (SCC) environments.1.2 Test specimens are described in which (a) stresses are developed by the welding process only, (b) stresses are developed by an externally applied load in addition to the stresses due to welding, and (c) stresses are developed by an externally applied load only with residual welding stresses removed by annealing.1.3 This practice is concerned only with the welded test specimen and not with the environmental aspects of stress-corrosion testing. Specific practices for the bending and loading of test specimens, as well as the stress considerations involved in preparation of C-rings, U-bend, bent-beam, and tension specimens are discussed in other ASTM standards.1.4 The actual stress in test specimens removed from weldments is not precisely known because it depends upon the level of residual stress from the welding operation combined with the applied stress. A method for determining the magnitude and direction of residual stress which may be applicable to weldment is described in Test Method E837. The reproducibility of test results is highly dependent on the preparation of the weldment, the type of test specimen tested, and the evaluation criteria used. Sufficient replication should be employed to determine the level of inherent variability in the specific test results that is consistent with the objectives of the test program.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For more specific safety hazards information, see Section 7.)1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
This specification covers two types of uncoated stress-relieved round high-carbon steel wire commonly used in prestressed linear concrete construction. These two types are the type BA used for applications in which cold-end deformation is used for anchoring purposes and type WA wire which is used for application in which the ends are anchored by wedges, no cold-end deformation of the wire is involved. Required tensile strength, yield strength, and elongation shall be evaluated using stress-relaxation test. Heat analysis shall be used to determine the percentage of specified elements especially sulfur and phosphorus to meet the required chemical composition.1.1 This specification covers two types of stress-relieved round high-carbon steel wire used in prestressed concrete construction, as follows:1.1.1 Type BA wire is used for applications in which cold-end deformation is used for anchoring purposes (Button Anchorage), and1.1.2 Type WA wire is used for application in which the ends are anchored by wedges, and no cold-end deformation of the wire is involved (Wedge Anchorage).1.2 A supplementary requirement (S1) is provided for use where low-relaxation wire and relaxation testing for that product is required by the purchaser. The supplementary requirement applies only when specified in the purchase order or contract.1.3 This specification is applicable for orders in either inch-pounds units (as Specification A421) or in SI units (as Specification A421M).1.4 The values stated in either inch-pound or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the specification.1.5 The text of this specification references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables) shall not be considered as requirements of the specification.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 This test method may be used for routine inspection purposes by subjecting a required number of specimens to the test conditions for a specified time and noting the number that fail. The cracking obtained with the test reagent is indicative of what may be expected from a wide variety of surface-active agents, soaps, and organic substances that are not absorbed appreciably by the polymer.5.2 Environmental stress-cracking is a property that is highly dependent upon the nature and level of the stresses applied and on the thermal history of the specimen (1). Under the conditions of the test method, high local multiaxial stresses are developed through the introduction of a controlled imperfection (2, 3). Environmental stress-cracking has been found to occur most readily under such conditions.NOTE 2: Different types of polyethylene plastics as defined in Specification D1248 are generally tested under different levels of strain and stress. When it is expressly desired to compare the types at equal levels of strain, the specimens for all types should be tested under Condition B, Table 1 (4) .(A) Dimensional values are not exactly equivalent. However, for referee purposes the metric units shall apply.(B) For referee purposes, concentration of Igepal will be consistent with the appropriate material standard. If no concentration is given, then 10 % volume solution shall be used.(C) At a temperature of 100°C, a full-strength reagent, rather than an aqueous solution of a reagent, is generally used because solutions tend to change their compositions by water evaporation losses during the period of test.5.3 Information from this test method is not intended to be used for direct application to engineering problems.NOTE 3: Caution should be used in comparing and ranking various ethylene plastics into distinct and separate groups by this test method (see Section 13 and Note 12).As thermal history is recognized as an important variable, test results by this test method employing laboratory molded samples cannot necessarily be expected to show agreement with test results from samples obtained by other means. The true performance potential of a given ethylene plastic may, however, best be determined with specimens obtained from commercially prepared items (5).1.1 This test method covers the determination of the susceptibility of ethylene plastics, as defined in Terminology D883, to environmental stress-cracking when subjected to the conditions herein specified. Under certain conditions of stress and in the presence of environments such as soaps, wetting agents, oils, or detergents, ethylene plastics may exhibit mechanical failure by cracking.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 777元 加购物车
5.1 Precracked specimens offer the opportunity to use the principles of linear elastic fracture mechanics (1)4 to evaluate resistance to stress corrosion cracking in the presence of a pre-existing crack. This type of evaluation is not included in conventional bent beam, C-ring, U-bend, and tension specimens. The precracked double beam specimen is particularly useful for evaluation of materials that display a strong dependence on grain orientation. Since the specimen dimension in the direction of applied stress is small for the precracked double beam specimen, it can be successfully used to evaluate short transverse stress corrosion cracking of wrought products, such as rolled plate or extrusions. The research applications and analysis of precracked specimens in general, and the precracked double beam specimen in particular, are discussed in Appendix X1.5.2 The precracked double beam specimen may be stressed in either constant displacement or constant load. Constant displacement specimens stressed by loading bolts or wedges are compact and self-contained. By comparison, constant load specimens stressed with springs (for example, proof rings, discussed in Test Method G49, 7.2.1.2) or by deadweight loading require additional fixtures that remain with the specimen during exposure.5.3 The recommendations of this practice are based on the results of interlaboratory programs to evaluate precracked specimen test procedures (2, 3) as well as considerable industrial experience with the precracked double beam specimen and other precracked specimen geometries (4-8).1.1 This practice covers procedures for fabricating, preparing, and using precracked double beam stress corrosion test specimens. This specimen configuration was formerly designated the double cantilever beam (DCB) specimen. Guidelines are given for methods of exposure and inspection.1.2 The precracked double beam specimen, as described in this practice, is applicable for evaluation of a wide variety of metals exposed to corrosive environments. It is particularly suited to evaluation of products having a highly directional grain structure, such as rolled plate, forgings, and extrusions, when stressed in the short transverse direction.1.3 The precracked double beam specimen may be stressed in constant displacement by bolt or wedge loading or in constant load by use of proof rings or dead weight loading. The precracked double beam specimen is amenable to exposure to aqueous or other liquid solutions by specimen immersion or by periodic dropwise addition of solution to the crack tip, or exposure to the atmosphere.1.4 This practice is concerned only with precracked double beam specimen and not with the detailed environmental aspects of stress corrosion testing, which are covered in Practices G35, G36, G37, G41, G44, and G50.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 To model the mechanical characteristics of overhead electrical conductor, stress-strain characteristics must be determined. The most accurate method for determination of these characteristics is a laboratory stress-strain test. These mechanical characteristics can then be used to determine the strain response of a conductor to mechanical loads, and thus predict the sag of the conductor. This can then be used to determine the required installation parameters to provide safe clearance and tension for the conductor usage.1.1 This test method covers the measurement of the elastic and short-term creep characteristics of conductors for overhead power lines.1.2 Stress-strain data from tests performed in accordance with IEC 61089 are compliant with this standard.1.3 Stress-strain data from prior Aluminum Association testing procedures are compliant with this standard.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The extraction of minerals from the Earth’s crust usually requires fracturing rock with tools made from metals, which have been clad, overlaid, or coated in some fashion with high hardness or wear-resistant materials, or both. Drilling, crushing, and moving rock involves high-stress abrasion on the surfaces that contact the rock. The stresses are high enough to crush or fracture the rock. This test method simulates this condition, and it is used to screen new materials for these types of applications. It can also be used as a quality control tool for materials destined for high-stress abrasion applications: slurry pumps, comminution equipment, recycling choppers, demolition equipment, etc.5.2 Most abrasion tests use low-stress abrasion. The abrasive stays relatively intact during testing. High-stress abrasion simulates applications where the force between an abrasive substance and a tool/component will be high enough to crush the abrasive. If this describes an application under study, then this may be an appropriate test method to use.1.1 This test method was developed for ranking the high-stress abrasion resistance of cemented carbides, but it has been successfully used on ceramics, cermets, and metal matrix hardfacings with a hardness over 55 Rockwell hardness, C scale (HRC). The feature of this test method that discriminates it from other abrasion tests is that the abrasive is forced against the test specimen with a steel wheel with sufficient force to cause fracture of the abrasive particles. Some abrasion tests use rubber wheels to force abrasive against test surfaces (Test Methods G65 and G105). A rubber wheel produces low-stress abrasion while a steel wheel produces high-stress abrasion.1.2 In summary, this is a high-stress laboratory abrasion test for hard materials using a water slurry of aluminum oxide particles as the abrasive medium and a rotating steel wheel to force the abrasive across a flat test specimen in line contact with the rotating wheel immersed in the slurry.1.3 The values stated in SI units are to be regarded as standard.1.3.1 Exceptions—Subsection 4.4 and Table 1 use abrasive grit designations for particle size. The value given in parentheses is nominal dimension in micrometers based on sieve designation (Specification E11) and provided for information only. Subsection 6.2 uses the Rockwell hardness, B scale (HRB) as the standard unit of measure for hardness. In 6.4, 7.6, 7.7, and Table 1, rpm is the standard unit of measure for rotational speed.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车