微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 1265-1990/Amdt 1-1992 Bushings for alternating voltages above 1000 V 现行 发布日期 :  1992-07-13 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏
AS 2006-1977 High voltage alternating current circuit-breakers 现行 发布日期 :  1977-07-01 实施日期 : 

定价: 1768元 / 折扣价: 1503

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

3.1 This test method provides a satisfactory means of determining various ac magnetic properties of amorphous magnetic materials.3.2 The procedures described herein are suitable for use by producers and users of magnetic materials for materials specification acceptance and manufacturing control.3.3 The procedures described herein may be adapted for use with specimens of other alloys and other toroidal forms.1.1 This test method covers tests for various magnetic properties of amorphous materials at power frequencies [25 to 400 Hz] using a toroidal test transformer. The term “toroidal test transformer” is used to describe the test device, reserving the term “specimen” to refer to the material used in the test. The test specimen consists of toroidally wound flat strip.1.2 This test method covers the determination of core loss, exciting power, rms and peak exciting current, several types of ac permeability, and related properties under ac magnetization at moderate and high inductions at power frequencies [25 to 70 Hz].1.3 With proper instrumentation and specimen preparation, this test method is acceptable for measurements at frequencies from 5 Hz to 100 kHz. Proper instrumentation implies that all test instruments have the required frequency bandwidth. Also see Annex A2.1.4 This test method also provides procedures for calculating impedance permeability from measured values of rms exciting current and for calculating ac peak permeability from measured peak values of total exciting current at magnetic field strengths up to about 10 Oe [796 A/m].1.5 Explanations of symbols and brief definitions appear in the text of this test method. The official symbols and definitions are listed in Terminology A340.1.6 This test method shall be used in conjunction with Practice A34/A34M.1.7 The values and equations stated in customary (cgs-emu and inch-pound) units or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method is a fundamental method for evaluating the magnetic performance of flat-rolled magnetic materials in either as-sheared or stress-relief annealed condition.3.2 This test method is suitable for design, specification acceptance, service evaluation, and research and development.1.1 This test method covers tests for the magnetic properties of basic flat-rolled magnetic materials at power frequencies (25 to 400 Hz) using a 25-cm Epstein test frame and the 25-cm double-lap-jointed core. It covers the determination of core loss, rms exciting power, rms and peak exciting current, and several types of ac permeability and related properties of flat-rolled magnetic materials under ac magnetization.1.2 This test method shall be used in conjunction with Practice A34/A34M.1.3 This test method2 provides a test for core loss and exciting current at moderate and high magnetic flux densities up to 15 kG [1.5 T] on nonoriented electrical steels and up to 18 kG [1.8 T] on grain-oriented electrical steels.1.4 The frequency range of this test method is normally that of the commercial power frequencies 50 to 60 Hz. With proper instrumentation, it is also acceptable for measurements at other frequencies from 25 to 400 Hz.1.5 This test method also provides procedures for calculating ac impedance permeability from measured values of rms exciting current and for ac peak permeability from measured peak values of total exciting currents at magnetic field strengths up to about 150 Oe [12 000 A/m].1.6 Explanation of symbols and abbreviated definitions appear in the text of this test method. The official symbols and definitions are listed in Terminology A340.1.7 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method evaluates the performance of flat-rolled magnetic materials over a wide frequency range of ac excitation with and without incremental dc bias, as used on transformers, motors, and other laminated core devices.4.2 This test method is suitable for design, specification acceptance, service evaluation, and research.4.3 The application of test results obtained with this test method to the design or evaluation of a particular magnetic device must recognize the influence of the magnetic circuitry upon its performance. Some specific items to consider are size, shape, holes, welding, staking, bolting, bracketing, shorting between laminations, ac waveform, adjacent magnetic fields, and stress.1.1 This test method covers the determination of the magnetic properties of flat-rolled magnetic materials using Epstein test specimens with double-lap joints in the 25-cm Epstein frame. It covers determination of core loss, rms and peak exciting current, exciting power, magnetic field strength, and permeability. This test method is commonly used to test grain-oriented and nonoriented electrical steels but may also be used to test nickel-iron, cobalt-iron, and other flat-rolled magnetic materials.1.2 This test method shall be used in conjunction with Practice A34/A34M and Test Method A343/A343M.1.3 Tests under this test method may be conducted with either normal ac magnetization or with ac magnetization and superimposed dc bias (incremental magnetization).1.4 In general, this test method has the following limitations:1.4.1 Frequency—The range of this test method normally covers frequencies from 100 to 10 000 Hz. With proper equipment, the test method may be extended above 10 000 Hz. When tests are limited to the use of power sources having frequencies below 100 Hz, they shall use the procedures of Test Method A343/A343M.1.4.2 Magnetic Flux Density  (may also be referred to as Flux Density)—The range of magnetic flux density for this test method is governed by the test specimen properties and by the available instruments and other equipment components. Normally, for many materials, the magnetic flux density range is from 1 to 15 kG [0.1 to 1.5 T].1.4.3 Core Loss and Exciting Power—These measurements are normally limited to test conditions that do not cause a test specimen temperature rise in excess of 50°C or exceed 100 W/lb [220 W/kg].1.4.4 Excitation—Either rms or peak values of exciting current may be measured at any test point that does not exceed the equipment limitations provided that the impedance of the ammeter shunt is low and its insertion into the test circuit does not cause appreciably increased voltage waveform distortion at the test magnetic flux density.1.4.5 Incremental Properties—Measurement of incremental properties shall be limited to combinations of ac and dc excitations that do not cause secondary voltage waveform distortion, as determined by the form factor method, to exceed a shift of 10 % away from sine wave conditions.1.5 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets except for the sections concerning calculations where there are separate sections for the respective unit systems. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
CAN3-C17-M84 (R2004) Alternating-Current Electricity Metering 现行 发布日期 :  1970-01-01 实施日期 : 

1. Scope 1.1 This Standard applies to the types of meters and associated devices normally used in the measurement of energy or power or both in the supply and distribution of electricity as a commodity. 1.1.1 This Standard does not provide details

定价: 728元 / 折扣价: 619

在线阅读 收 藏

3.1 This test method is a derivative of Test Method A697/A697M specifically designed for testing of toroidal cores which are not covered in Test Method A697/A697M and for testing at magnetic flux densities above the knee of the magnetization curve.3.2 Specimen size typically ranges from 1 in. to 1.25 in. [25.4 mm to 31.8 mm] in inside diameter to 1.5 in. [38.1 mm] in outside diameter with weights ranging from 30 g to 60 g. Provided the test equipment is suitably chosen, there is no obvious limit to the overall size of core that can be tested. If basic material properties are desired, then the requirements of 5.1 must be observed.3.3 The reproducibility and repeatability of this test method are such that this test method is suitable for design, specification acceptance, service evaluation, and research and development.3.4 When testing under sinusoidal flux conditions at magnetic flux densities approaching saturation, highly peaked magnetizing waveforms will be present, and the test instruments used must have crest factor capabilities of at least 3; otherwise erroneous results will be obtained.1.1 This test method covers the determination of several ac magnetic properties of either laminated ring or toroidal tape wound cores made from flat rolled product.1.2 This test method covers test equipment and procedures for determination of specific core loss, specific exciting power, and peak permeability for power and audio frequencies (50 Hz to 20 000 Hz) under sinusoidal flux conditions.1.3 This test method, because of the use of a feedback-controlled power amplifier, is well suited for determination of ac magnetic properties at magnetic flux densities above the knee of the magnetization curve and is particularly useful for testing of high-saturation iron-cobalt alloys (for example, alloys listed in Specification A801), although use of this test method is not restricted to a particular type of material.1.4 This test method shall be used in conjunction with Practice A34/A34M and Terminology A340.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method provides a satisfactory means of determining various ac magnetic properties of amorphous magnetic materials. It was developed to supplement the testing of toroidal and Epstein specimens. For testing toroidal specimens of amorphous materials, refer to Test Method A912/A912M.4.2 The procedures described herein are suitable for use by manufacturers and users of amorphous magnetic materials for materials specification acceptance and manufacturing control.NOTE 2: This test method has been principally applied to the magnetic testing of thermally, magnetically annealed, and flattened amorphous strip at 50 and 60 Hz. Specific core loss at 13 or 14 kG [1.3 or 1.4 T], specific exciting power at 13 or 14 kG [1.3 or 1.4 T], and the flux density, B, at 1 Oe [79.6 A/m] are the recommended parameters for evaluating power grade amorphous materials.1.1 This test method covers tests for various magnetic properties of flat-cast amorphous magnetic materials at power frequencies (50 and 60 Hz) using sheet-type specimens in a yoke-type test fixture. It provides for testing using either single- or multiple-layer specimens.NOTE 1: This test method has been applied only at frequencies of 50 and 60 Hz, but with proper instrumentation and application of the principles of testing and calibration embodied in the test method, it is believed to be adaptable to testing at frequencies ranging from 25 to 400 Hz.1.2 This test method provides a test for specific core loss, specific exciting power and ac peak permeability at moderate and high flux densities, but is restricted to very soft magnetic materials with dc coercivities of 0.07 Oe [5.57 A/m] or less.1.3 The test method also provides procedures for calculating ac peak permeability from measured peak values of total exciting currents at magnetic field strengths up to about 2 Oe [159 A/m].1.4 Explanation of symbols and abbreviated definitions appear in the text of this test method. The official symbols and definitions are listed in Terminology A340.1.5 This test method shall be used in conjunction with Practice A34/A34M.1.6 The values stated in either customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The purpose of the alternating current field measurement method is to evaluate welds for surface breaking discontinuities such as fabrication and fatigue cracks. The examination results may then be used by qualified organizations to assess weld service life or other engineering characteristics (beyond the scope of this practice). This practice is not intended for the examination of welds for non-surface breaking discontinuities.1.1 This practice describes procedures to be followed during alternating current field measurement examination of welds for baseline and service-induced surface breaking discontinuities.1.2 This practice is intended for use on welds in any metallic material.1.3 This practice does not establish weld acceptance criteria.1.4 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system might not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1. Scope 1.1 This Standard applies only to gapless metal oxide surge arresters of separate mounting or those supplied integrally with other equipment. The surge arresters are designed to limit voltage surges in 50 or 60 Hz alternating current power ci

定价: 455元 / 折扣价: 387

在线阅读 收 藏

5.1 This test method was developed for evaluating the ac magnetic properties of laminated cores made from flat-rolled magnetic materials.5.2 The reproducibility and repeatability of this test method are such that this test method is suitable for design, specification acceptance, service evaluation, and research and development.1.1 This test method covers the determination of several ac magnetic properties of laminated cores made from flat-rolled magnetic materials.1.2 This test method covers test equipment and procedures for the determination of impedance permeability and exciting power from voltage and current measurements, and core loss from wattmeter measurements. These tests are made under conditions of sinusoidal flux.1.3 This test method covers tests for two general categories (1 and 2) of cores based on size and application.1.4 Tests are provided for power and control size cores (Category 1) operating at inductions of 10 to 15 kG [1.0 to 1.5 T] and at frequencies of 50, 60, and 400 Hz.1.5 Procedures and tests are provided for coupling and matching type transformer cores (Category 2) over the range of inductions from 100 G [0.01 T] or lower to 10 kG [1.0 T] and above at 50 to 60 Hz or above when covered by suitable procurement specifications.1.6 This test method also covers tests for core loss and ac impedance permeability under incremental test conditions (ac magnetization superimposed on dc magnetization) for the above core types and at inductions up to those that cause the ac exciting current to become excessively distorted or reach values that exceed the limits of the individual test equipment components.1.7 This test method shall be used in conjunction with Practice A34/A34M and Terminology A340. It depends upon these designated documents for detailed information which will not be repeated in this test method.1.8 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides an easy, accurate, and reproducible method for determination of shielding factors (attenuation ratios) in simple alternating magnetic fields.5.2 Since the sensing or pickup coil is of finite size, the measured shielding factor tends to be the average value for the space enclosed by the coil. Due care is required when interpreting results when the coil is located near an opening in the shield.5.3 This test method is suitable for design, specification acceptance, service evaluation, quality assurance, and research purposes on magnetic shields.5.4 Provided geometrically identical shields are compared, this test method is also suitable for evaluation and grading of magnetic shielding materials.1.1 This test method covers the means for determining the performance quality of a magnetic shield when placed in a magnetic field of alternating polarity.1.2 This test method provides a means of evaluating and grading magnetic shielding materials to determine their suitability for use in the production of magnetic shields.1.3 This test method shall be used in conjunction with and shall conform to the requirements of Practice A34/A34M.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
26 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页