微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

The degree and rate of anaerobic biodegradability of a plastic material in this test method may be predictive of the time period required to eliminate that plastic from the environment depending on the similarities of the environments. With increasing use of plastics, disposal is a major issue. This test method may be useful to estimate the degree and persistence of plastics in biologically active anaerobic disposal sites. This test method determines the rate and degree of anaerobic biodegradation by measuring the evolved volume of carbon dioxide and methane, as a function of time of exposure to anaerobic-digester sludge.Anaerobic sewer-digester sludge from treatment of clarifier sludge at a waste-water treatment plant that treats principally municipal waste is an acceptable active anaerobic environment (available over a wide geographical area) in which to test a broad range of plastic materials. This test method may be considered an accelerated test with respect to a typical anaerobic environment, such as landfill sites that plastics encounter in usual disposal methods because of the highly active microbial population of anaerobic-digester sludge.1.1 This test method determines the degree and rate of anaerobic biodegradation of synthetic plastic materials (including formulation additives) on exposure to anaerobic-digester municipal sewage sludge from a waste-water plant, under laboratory conditions.1.2 This test method is designed to index plastic materials that are more or less biodegradable relative to a positive standard in an anaerobic environment.1.3 This test method is applicable to all plastic materials that are not inhibitory to the microorganisms present in anaerobic sewage sludge.1.4 The values stated in SI units are to be regarded as the standard.This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 8.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This method can be used to assess the anaerobic biodegradability of polymeric components of MSW such as packaging materials and to compare their biodegradability to that of materials routinely buried in landfills such as office paper and newsprint. The procedure can be completed in 6 to 9 months. This timeframe makes it possible to consider waste management during product design. The data from this method makes it possible to characterize the behavior of consumer products at the end of their useful life when they enter the solid waste management system.Limitations—Because decomposition in this test is accelerated, the results reflect the ultimate biodegradability of a material in a landfill. The actual rate of degradability in a full-scale landfill will be affected by landfill environmental conditions as well as the physical characteristics of the material when actually buried.1.1 This test method is designed to measure the anaerobic biodegradability of a material under conditions that simulate accelerated decomposition in a municipal solid waste (MSW) landfill. The test method requires the use of a 14C-labeled material so that biodegradability can be determined by monitoring for methane (14CH4) and gaseous and aqueous carbon dioxide (14CO2(g) and 14CO2(aq)), which are the terminal endproducts of methanogenic decomposition. Methanogenic conditions typically control decomposition in landfills.Note 1—A more complete description of this decomposition is found in Reference (3).1.2 This method could be applied to landfills that contain materials other than MSW. 14C-Radiolabeled material will be added to compost such that between 25 ci and 75 μci activity per 2 litres of test refuse results.Note 2—Adding more radiolabel is desirable because, if the material biodegrades, there will be little residual radiolabel left at the end of the decomposition experiment, which is when the refuse is removed from a reactor and analyzed for residual radiolabel to perform a mass balance. In addition, if insufficient radiolabel is added, then CH4 and CO2(g) production from the added refuse will dilute the 14CH4 and 14CO2(g) from decomposition of the test material, and the labeled gases may not be detected in the reactor offgas.1.3 This measure of anaerobic biodegradability in the laboratory represents what will ultimately occur in a landfill over a long period. The test conditions specified here are designed to accelerate refuse decomposition such that the entire decomposition cycle can be completed in six months.Note 3—This cycle may require decades in a landfill depending upon the actual environmental conditions (moisture content, pH, temperature).1.4 The measured biodegradability obtained here is compared to the biodegradability of both pure and lignified cellulose, which are chemically similar to office paper and newsprint, both of which are routinely buried in landfills.Note 4—The degradability of the referenced compounds is described in References (2) and (5).At this time, there is no standard concerning the extent to which a compound must biodegrade under the test conditions described here to be considered biodegradable. Thus, this test is most appropriately used to measure biodegradability relative to pure and lignified cellulose.1.5 The safety problems associated with refuse and radioactivity are not addressed in this standard. It is the responsibility of the user of this standard to establish appropriate safety and health practices. It is also incumbent on the user to conform to all the regulatory requirements, specifically those that relate to the use of open radioactive sources.Note 5—There are no corresponding ISO standards.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Biodegradation of a plastic within a high-solids anaerobic digestion unit is an important phenomenon because it will affect the decomposition of other waste materials enclosed by the plastic and the resulting quality and appearance of the digestate after an anaerobic digestion process. Biodegradation of plastics could allow for the safe disposal of these plastics through aerobic and anaerobic solid-waste-treatment plants. This procedure has been developed to permit the determination of the rate and degree of anaerobic biodegradability of plastic products when placed in a high-solids anaerobic digester for the production of digestate from municipal solid waste.5.2 Limitations—Because there is a wide variation in the construction and operation of anaerobic-digestion systems and because regulatory requirements for composting systems vary, this procedure is not intended to simulate the environment of any particular high-solids anaerobic-digestion system. However, it is expected to resemble the environment of a high-solids anaerobic-digestion process operated under optimum conditions. More specifically, the procedure is intended to create a standard laboratory environment that will permit a rapid and reproducible determination of the anaerobic biodegradability under high-solids digestion conditions.1.1 This test method covers the determination of the degree and rate of anaerobic biodegradation of plastic materials in high-solids anaerobic conditions. The test materials are exposed to a methanogenic inoculum derived from anaerobic digesters operating only on pretreated household waste. The anaerobic decomposition takes place under high-solids (more than 30 % total solids) and static non-mixed conditions.1.2 This test method is designed to yield a percentage of conversion of carbon in the sample to carbon in the gaseous form under conditions found in high-solids anaerobic digesters, treating municipal solid waste (1, 2, 3, 4).2 This test method may also resemble some conditions in biologically active landfills where the gas generated is recovered and biogas production is actively promoted by inoculation (for example, codeposition of anaerobic sewage sludge, anaerobic leachate recirculation), moisture control (for example, leachate recirculation), and temperature control (for example, short-term injection of oxygen, heating of recirculated leachate) (5, 6, 7).1.3 This test method is designed to be applicable to all plastic materials that are not inhibitory to the microorganisms present in anaerobic digesters operating on household waste.1.4 Claims of performance shall be limited to the numerical result obtained in the test and not be used for unqualified “biodegradable” claims. Reports shall clearly state the percentage of net gaseous carbon generation for both the test and reference samples at the completion of the test. Furthermore, results shall not be extrapolated past the actual duration of the test.1.5 The values given in SI units are to be regarded as the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 8.NOTE 1: This test method is equivalent to ISO 15985.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Decomposition of a plastic within a landfill involves biological processes that will affect the decomposition of other materials enclosed by, or in close proximity to, the plastic. Rapid degradation of the plastic has the ability to increase the economic feasibility of landfill-gas recovery, minimize the duration of after-care of the landfill, and make possible the recovery of the volume reduction of the waste due to biodegradation during the active life of the landfill. This procedure has been developed to permit determination of the anaerobic biodegradability of plastic products when placed in biologically active environments simulating landfill conditions.5.2 As degradation occurs inevitably in a landfill, it is of immediate concern that the plastic materials do not produce toxic metabolites or end products under the various conditions that have the potential to occur in a landfill. The mixtures remaining after completion of the test method, containing fully or partially degraded plastic materials or extracts, can be submitted subsequently to ecotoxicity testing in order to assess the environmental hazards posed by the breakdown of plastics to varying degrees in landfills. This test method has been designed to assess biodegradation under optimum and less-than-optimum conditions.5.3 Limitations—Because a wide variation exists in the construction and operation of landfills, and because regulatory requirements for landfills vary greatly, this procedure is not intended to simulate the environment of all landfills. However, it is expected to closely resemble the environment of a biologically active landfill. More specifically, the procedure is intended to create a standard laboratory environment that permits rapid and reproducible determination of the anaerobic biodegradability under accelerated landfill conditions, while at the same time producing reproducible mixtures of fully and partially decomposed household waste with plastic materials for ecotoxicological assessment.1.1 This test method covers determination of the degree and rate of anaerobic biodegradation of plastic materials in an accelerated-landfill test environment. This test method is also designed to produce mixtures of household waste and plastic materials after different degrees of decomposition under conditions that resemble landfill conditions. The test materials are mixed with pretreated household waste and exposed to a methanogenic inoculum derived from anaerobic digesters operating only on pretreated household waste. The anaerobic decomposition occurs under dry (more than 30 % total solids) and static nonmixed conditions. The mixtures obtained after this test method can be used to assess the environmental and health risks of plastic materials that are degraded in a landfill.1.2 This test method is designed to yield a percentage of conversion of carbon in the sample to carbon in the gaseous form under conditions that resemble landfill conditions. It is possible that this test method will not simulate all conditions found in landfills, especially biologically inactive landfills. This test method more closely resembles those types of landfills in which the gas generated is recovered or even actively promoted, or both, for example, by inoculation (codeposition of anaerobic sewage sludge and anaerobic leachate recirculation), moisture control in the landfill (leachate recirculation), and temperature control (short-term injection of oxygen and heating of recirculated leachate) (1-7).21.3 This test method is designed to produce partially degraded mixtures of municipal solid waste and plastics that can be used to assess the ecotoxicological risks associated with the anaerobic degradation of plastics after various stages of anaerobic biodegradation in a landfill.1.4 Claims of performance shall be limited to the numerical result obtained in the test and not be used for unqualified “biodegradable” claims. Reports shall clearly state the percentage of net gaseous carbon generation for both the test and reference samples at the completion of the test. Furthermore, results shall not be extrapolated past the actual duration of the test.1.5 The values stated in SI units are to be regarded as the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 8.NOTE 1: There is no known ISO equivalent to this standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method will yield data that will form a performance profile for an anaerobic digester facility. The significance of this profile is that it can be compared directly to another facility’ performance profile and yield a measurement of expected facility performance under field conditions.This test method will also yield data that can be used to verify the operation of a system to a regulatory agency.The single black box technique applied to performance evaluation examines only the overall input/output relationship. This implies that the operation of the facility during the tests will be conducted to achieve design conditions in accordance with established procedures.1.1 This test method is applicable to all anaerobic digestion systems.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This practice covers an inspection procedure to ensure that studs installed with an anaerobic thread locking compound have achieved the necessary backout resistance. Verification of fastener locking effectiveness of anaerobic compounds shall be done. After inspection, the joint assembly shall be completed and final torque applied.1.1 This practice covers an inspection procedure to ensure that studs installed with an anaerobic thread locking compound have achieved the necessary backout resistance.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Decomposition of a plastic within a landfill involves processes in aerobic and anaerobic environmental conditions that can affect the decomposition of other materials enclosed by or in close proximity to the plastic. The rate of change from aerobic to anaerobic conditions is probably a characteristic of the particular landfill site, its garbage and the filling technique and is therefore difficult to assess with any degree of accuracy. Different sources indicate days to months (Refs (8) and (9)) for this change with the spread dependent on the perspective of what is aerobic or anaerobic and how fast the environment changes, 30 days is chosen in this method as a compromise time period. (Note, even very low levels of oxygen, far below normal atmospheric concentration can promote oxidative degradation). Obviously, there will be pockets of protected (in bags, cans, etc.) aerobic activity enclosed in any landfill. There is currently no evidence or data to support claims that rapid degradation of the plastic (when compared to conventional non-degradable plastic) can increase the economic feasibility of landfill-gas recovery, minimize the duration of after-care of the landfill, and make possible the recovery of the volume reduction of the waste due to degradation and biodegradation during the active life of the landfill. Additionally, it is possible that the rapid degradation and biodegradation of plastics can create hazardous conditions in landfills, such as the shifting of cells and overall stability. This standard method has been developed to permit determination of the aerobic degradation and anaerobic biodegradation of plastic products when placed in biologically active environments simulating some landfill conditions.5.2 The decomposition of plastic materials in a landfill is of importance, as most landfills are biologically active and are an increasingly significant source of renewable energy. As degradation occurs in a landfill, it is of immediate concern that the plastic materials do not produce toxic metabolites or end products under the various conditions that occur in a landfill. The mixtures remaining after completion of the test method, containing fully or partially degraded plastic materials or extracts can be, when appropriate, submitted subsequently to ecotoxicity testing, see Practice D5951 and Guide D6954 for details, in order to assess the environmental hazards posed by the breakdown of plastics to varying degrees in landfills, especially if leaching occurs. This test method has been designed to assess aerobic degradation and anaerobic biodegradation under optimum and less-than-optimum conditions and toxicity.5.3 Limitations—Because a wide variation exists in the construction and operation of landfills, and because regulatory requirements for landfills vary greatly, this procedure is not intended to simulate the environments of all landfills. However, it is expected to closely resemble the environment of a biologically active landfill. More specifically, the procedure is intended to create a standard laboratory environment that permits rapid and reproducible determination of the aerobic degradability and anaerobic biodegradability under accelerated landfill conditions, while at the same time producing reproducible mixtures of fully and partially decomposed household waste with plastic materials for ecotoxicological assessment.1.1 This test method is used to determine the degree and rate of aerobic degradation (as indicated by loss of tensile strength, molecular weight, possibly resulting in disintegration and fragmentation) and anaerobic biodegradation of plastic materials in an accelerated aerobic-anaerobic bioreactor landfill test environment. It can simulate the change from aerobic to anaerobic environments over time as landfill depth increases. In Tier 1, the test plastic material is mixed with household waste, then pretreated and stabilized aerobically in the presence of air, in a sealed vessel in a temperature range that is consistent with the average temperature range of those recorded for landfills. The tier is an accelerated simulation of degradation with concomitant oxygen consumption and depletion with time as if oxidative degradation proceeds. In Tier 2 samples of the plastic materials pretreated aerobically as described in Tier 1, are exposed to a methanogenic inoculum derived from anaerobic digesters operating only on pretreated household waste. The anaerobic decomposition and biodegradation occur under dry (more than 30 % total solids) and static non-mixed conditions.1.2 This test method generates comparative data for several materials and must not be used to make claims regarding benefits of placing degradable or biodegradable plastics in landfills. Claims must be limited to and dependent on the results obtained from each tier.1.2.1 If only Tier 1 is run, then the claims must state: Will modify the performance/physical properties (for example, mechanical properties will degrade), up to a measured percent, X%, in a given time period, Y days using Test Methods D3593 (Molecular weight change) and Test Method D3826 (tensile strength change) in a biologically active “bioreactor” landfill. Report measured percent property changes and standards used to measure the test results which are, for example, changes in tensile strength, mass and molecular weight, as well as residual particle size ranges in Section 14 to support the extent of such claims.1.2.2 If both Tier 1 and Tier 2 are run, then claims shall state: Will biodegrade in a biologically active “bioreactor” landfill to a degree, X%, in Y days established by the test results based on the extent to which the plastic sample is converted to gaseous carbon in the form of carbon dioxide and methane and this shall be made available according to Section 14 to support the extent of such claims. It should be noted that biodegradation testing is very dependent on conditions chosen in this laboratory test and may well vary widely when the test is run with different inoculum, The results reported pertain only to the test conditions run and do not rule out potential biodegradation under other conditions and real world environments.1.3 Tier 1 of this test method is designed to estimate the aerobic degradation of plastics, that is disintegration and fragmentation, only, by measuring the loss of physical and chemical properties of said plastics. The test environment is then changed to that of Tier 2, an anaerobic condition, and biodegradation is measured by a combination of evolved carbon dioxide and methane gases as a percentage of the conversion of carbon in the plastic sample to carbon in the gaseous form under conditions that resemble landfill conditions. This test method does not simulate all conditions found in landfills, especially those found in biologically inactive landfills. This test method more closely resembles those types of bioreactor landfills in which the gas generated is recovered or even actively promoted, or both, for example, by inoculation (co-deposition of anaerobic sewage sludge and anaerobic leachate recirculation), moisture control in the landfill (leachate recirculation), and temperature control (short-term injection of oxygen and heating of re-circulated leachate) (1-7).21.4 This test method produces partially degraded mixtures of municipal solid waste and plastics that, where required, are used to assess the ecotoxicological risks associated with the degradation of plastics after various stages of aerobic degradation and anaerobic biodegradation in a landfill.1.5 The intended use of this method is for a comparison and ranking of aerobic degradation and anaerobic biodegradation of plastics after disposal in a bioreactor landfill. It is not designed or intended to be used to support claims recommending the value of plastic degradation in full-scale landfills. This simulation of an active landfill allows measurement of the percentage of aerobic degradation and anaerobic biodegradation (biogas evolution) in specified time periods, only.1.6 Though the test method is in two tiers, they are meant to simulate a real world cycle of degradation in a landfill and are most preferably run consecutively and not independently or separately.1.7 It is cautioned that the results of any laboratory landfill simulation cannot be directly extrapolated to actual disposal environments: confirmation to real world exposure is ultimately required as with all ASTM Standards. This confirmation is essential for landfill as the types of landfills vary widely, some are even heavily lined, tombs, and these will limit degradation severely.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the requirements for single-component anaerobic adhesives suitable for locking, sealing, and retaining threaded or cylindrical assemblies. It is intended to be a means of classifying the adhesives, and does not address engineering design purposes. The adhesives are cured to a solid state when confined between closely fitting active metal surfaces. Materials shall undergo test procedures and conform accordingly to the following requirements: ultraviolet fluorescence; color and workmanship; flash point; storage stability; toxicity; solvent resistance; hot strength; heat aging; cold strength; lubricity; fluid tightness; wicking; viscosity; speed of cure; prevailing torque strength (strength at standard conditions); and qualification of primers.1.1 This specification covers single-component anaerobic adhesives suitable for locking, sealing, and retaining threaded or cylindrical assemblies. The adhesives are cured to a solid state when confined between closely fitting active metal surfaces.1.2 This specification is intended to be a means of classifying anaerobic adhesives. It is not intended for engineering design purposes.1.3 This specification is intended to replace Military Specifications MIL-S-22473, MIL-S-46163, and MIL-R-46082.1.4 The values stated in SI units are to be regarded as the standard.1.5 The following safety hazards caveat pertains only to the test methods portion, Section 7, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
8 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页