微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at 90°C (194°F) of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 This test method covers the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 This test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 This test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 This test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 This test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The data from this guide seldom, if ever, directly simulate thermal and pressure events in the processing, storage, and shipping of chemicals. However, the data obtained from this guide may be used, with suitable precautions, to predict the thermal and pressure hazards associated with processing, storage, and shipping of a chemical or mixture of chemicals after appropriate scaling of the data. This has been addressed in the literature (1-4) but is beyond the scope of this guide.5.2 This guide is suitable, under the proper conditions, for the investigation of the effects of catalyst, inhibitors, initiators, reaction atmospheres, materials of construction, or, if available, agitation (see 6.1.2).5.3 Interpretation of the time-temperature or time-pressure data may be possible for relatively simple systems through the use of suitable temperature-dependent kinetic theories such as the Arrhenius and Absolute Reaction Rate theories (5, 6).1.1 This guide covers suggested procedures for the operation of a calorimetric device designed to obtain temperature and pressure data as a function of time for systems undergoing a physicochemical change under nearly adiabatic conditions.1.2 This guide outlines the calculation of thermodynamic parameters from the time, temperature, and pressure data recorded by a calorimetric device.1.3 The assessment outlined in this guide may be used over a pressure range from full vacuum to the rated pressure of the reaction container and pressure transducer. The temperature range of the calorimeter typically varies from ambient to 500 °C, but also may be user specified (see 6.6).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety precautions are outlined in Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at ca. 22°C of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 The test described is a method for the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 The test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 The test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 The test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 The test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in metric (SI) units are to be regarded as the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This guide discusses ways to assess the likelihood that a hydraulic fluid will undergo biodegradation if it enters an environment that is known to support biodegradation of some substances, for example the material used as the positive control in the test. The information can be used in making or assessing claims of biodegradability of a fluid formula.5.2 Biodegradation occurs when a fluid interacts with the environment, and so the extent of biodegradation is a function of both the chemical composition of the hydraulic fluid and the physical, chemical, and biological status of the environment at the time the fluid enters it. This guide cannot assist in judging the status of a particular environment, so it is not meant to provide standards for judging the persistence of a hydraulic fluid in any specific environment either natural or man-made.5.3 If any of the tests discussed in this guide gives a high result, it implies that the hydraulic fluid will biodegrade and will not persist in the environmental compartment being considered. If a low result is obtained, it does not mean necessarily that the substance will not biodegrade in the environment, but does mean that further testing is required if a claim of biodegradability is to be made. Such testing may include, but is not limited to, other tests mentioned in this guide or simulation tests for a particular environmental compartment.1.1 This guide covers and provides information to assist in planning a laboratory test or series of tests from which may be inferred information about the biodegradability of an unused fully formulated hydraulic fluid in its original form. Biodegradability is one of three characteristics which are assessed when judging the environmental impact of a hydraulic fluid. The other two characteristics are ecotoxicity and bioaccumulation.1.2 Biodegradability may be considered by type of environmental compartment: aerobic fresh water, aerobic marine, aerobic soil, and anaerobic media. Test methods for aerobic fresh water, aerobic soil and anaerobic media have been developed that are appropriate for the concerns and needs of testing in each compartment.1.3 This guide addresses releases to the environment that are incidental to the use of a hydraulic fluid but is not intended to cover situations of major, accidental release. The tests discussed in this guide take a minimum of three to four weeks. Therefore, issues relating to the biodegradability of hydraulic fluid are more effectively addressed before the fluid is used, and thus before incidental release may occur. Nothing in this guide should be taken to relieve the user of the responsibility to properly use and dispose of hydraulic fluids.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The RSA method provides risk and resource managers with an enhanced understanding of the ecological health concerns at the sites they oversee because unlike conventional terrestrial ERAs, actual site mammals are the ones evaluated. Additionally, the HQs of desktop efforts report only on the contaminant exposure route of ingestion, and can only evaluate chemicals singly, whereas RSA findings reflect all three exposure routes as well as the combined effects of multiple chemicals on a highly valued endpoint. Critically, the RSA method incorporates site history considerations that necessarily influence the phenomenon of biological response. If reproductive impacts at contaminated sites were ever to be elicited, such would be apparent today because evaluated sites have, at a minimum, continuously exposed their ecological receptors to chemicals for multiple decades during which time tens and often more than one hundred generations have passed (5).5.2 Application of the subject guide familiarizes remedial decision-makers and risk managers with two concepts. First, rather than attempting to predict health effects arising in site receptors, there may be more value in documenting demonstrated health effects, should such exist in actual site-exposed mammalian receptors. Second, the possibility exists that site receptors never experienced stress or impact over the years since a site first became contaminated.5.3 Application of the subject guide can allow for substantial cost savings. Often, the outcomes of HQ-based assessments are summarily relied upon to conduct ongoing studies, monitor sites, or implement site cleanups, all of which may be unnecessary. Where RSA applications should demonstrate that maximally site-exposed mammalian receptors (as defined in section 4.1) are not experiencing compromise with regard to the sensitive endpoint of reproductive success, it can become apparent that soil remediation efforts on behalf of mammals are not needed.5.4 The described RSA method can typically be applied at that point in the ERA process where HQs for one or more mammalian species are found to be greater than 1.0, as in the process’s Step 2 (Screening-Level Exposure Estimate and Risk Calculation; where ecological threats are evaluated in a general, as opposed to a specific fashion). Alternatively and particularly at sites that are not governed as rigidly as, for example, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA; aka Superfund-type) sites, the guide can be applied once it is established that a site has a chemical contamination footprint of interest (that is, that soil concentrations are high enough to potentially be harmful to mammalian site receptors). In light of the propensity for preliminary and refined HQs to suggest mammals are ingesting unhealthful doses of site contaminants, in turn commonly leading to advancing to the field for a verification effort, the application of RSA as a first evaluative effort is intended to be a time- and cost-saving effort.5.5 The significance of this guide is the method design that reflects an understanding of certain unavoidable ERA process constraints, specifically in the areas of field mammal collection and subsequent tissue analysis. First, the RSA method recognizes that small rodents are the only mammals that can be routinely culled from the field (that is, to be removed and not returned), and further, that this reality is unlikely to ever change. Efforts to regularly harvest larger mammals (for example, fox) may be challenged by local governing agencies and animal care institutions. Additionally, acquiring a sufficiency of larger mammals is time-consuming and labor-intensive, owing to relatively miniscule animal densities. Further, many larger mammals (for example, long-tailed weasel, badger) are not found in all habitats or in all states. In contrast, small rodents occur in virtually every habitat, are relatively easy to collect, and are numerous enough to allow for defensible comparisons between or among sites. In selecting the maximally exposed small rodent to work with (that is, an animal confined to contaminated surroundings throughout its life due to a home range that is almost always of one acre or less), the RSA method features a common basis of comparison (and certainly wherever it should be applied in the United States).5.6 RSA theory understands that, generally at contaminated terrestrial sites, there is worry that receptors-of-concern might be reproductively compromised. The focus on reproduction as the dominant toxicological endpoint of concern (6, 7), recognizes that much method development for reproductive effects in rodents (in support of human health) has occurred (9, 17). That reproduction bears this status is evident in the hierarchy of preferred toxicity reference values (TRVs) that ecological risk assessors often select in support of HQ computation. Additional recognition is given to the reality that standardized means for effectively assessing other endpoints of interest in field-collected organisms, such as neurotoxicity or behavior, do not exist. Where established sperm parameter benchmark exceedances are not observed in contaminated site rodents, such can constitute a significant line of evidence in support of a determination that reproduction is proceeding adequately. The RSA method recognizes that impairments to other biological functions (for example, behavior, nerve impulse transmission) of contaminated-site rodents may be occurring despite reproduction proceeding normally (2, 3). Where such is the case, the method’s supporting theory understands that other endpoints being reached do not necessarily pose a concern for they have not impeded the ability of maximally exposed rodents to survive to the age of reproduction, find mates, and produce viable young (2, 18).5.7 This guide recognizes that an analagous reproductive assessment approach for female rodents, is not available at the present time. Importantly, an absent reproductive assessment approach for females does not constitute a shortcoming of the subject guide. Relevant U.S. EPA guidance, for example, supports evaluating one sex of a species where drug and chemical regulation is concerned, and drawing conclusions based on such information (19). In this context several noteworthy points follow. First, over 98 % of all mammalian toxicity studies considered in crafting the U.S. EPA’s Soil Screening Levels (SSLs) for ERA (for some 17 inorganic and 4 organic chemical species) are of the single-sex type, with 35 % of the studies being male-only (20). Additionally, for 37 % of the universe of chemicals with SSLs, the number of male-only toxicity studies exceeds the number of female-only toxicity studies. Finally, a significant percentage of the most commonly applied toxicological benchmarks for wildlife (21) derive from single-sex studies. Critically, with its focus on directly assessing reproduction in male rodents, RSA is notably far less destructive than would be a method involving the culling of female rodents from the field, given that the latter are the ones that bear the young.5.8 This guide recognizes the value in employing the wild rodent in field-based mammalian receptor assessment. Aside from the reality that rodents may constitute the only mammals that can regularly be culled from sites (discussed above), there are key advantages that accrue to working with these animals. Small rodents occur in nearly all terrestrial habitats, allowing the guide to be broadly applicable in a geographical sense. A second advantage is that the small rodent with perhaps no exception, will likely be the maximally-exposed mammal in terrestrial settings, this again, in terms of having direct contact with contaminated soils. This follows from rodents being non-migratory in nature, having extremely limited home ranges that effectively contain them at contaminated sites, and their spending nearly all of their time directly contacting the ground (that is, contaminated soils; 2, 4, 18).5.9 In providing a useful line of evidence in support of ERAs for mammals, this guide employs a straightforward extrapolation approach (2, 18), one that is isomorphic to that applied in conventional HQ-based assessments. If site rodents, that have more constant and intimate contact with affected site soils than that of any other site mammal, are not found to have compromised reproduction, larger and wider-ranging mammals, with their considerably lesser degrees of site (that is, contaminated soil) contact, should also be free of reproductive compromise. An appreciation for this extrapolation scheme derives from a review of the principal extrapolation scheme of conventionally-applied desktop-based ERAs. There, a laboratory-based mouse or rat study is routinely used to determine if another mammal (for example, deer, fox, rabbit) is ingesting an unhealthful quantity of a given chemical. With the conventional ERA scheme, there are numerous differences to acknowledge, and even at the level of the rodent. Thus the test animal and the wild form inhabiting the site of interest that is to be assessed, do not match in terms of species, rearing, environment/habitat, or feeding design, and these differences weaken conclusions that can be drawn. In contrast, the subject standard in its initial extrapolation, compares sperm measures, each a proven barometer of reproductive success (22-25), in populations of conspecifics living less than a kilometer apart, with one population inhabiting a soil-contaminated area, and the other a contaminant-free one. The RSA method recognizes that small rodents of contaminated sites are integrators of potentially imposing environmental stressors that extend beyond chemicals that may be present in soil and diet items, to include such things as physical habitat disturbances (for example, noise or land vibration). RSA understands that conventional ecological assessments necessarily strive to know of small rodent reproductive capability, as this grouping is held to be a keystone ecosystem element. Where reproductive compromise is not observed in an RSA outcome, there is demonstration that a site’s exhaustive list of site stressors, in the actual arrays in which they occur, are not impinging on what is generally held to be the most important toxicological endpoint.5.10 One limitation of this guide is that the biologically-significant thresholds-for- (reproductive)-effect that are applied, are laboratory-derived. A second limitation of this guide is that shrews generally cannot submit to the RSA method, owing to their exceedingly high metabolism that interferes with their being live-trapped in the field. In the rare case where the only rodents present at a contaminated site of concern should be shrews, the RSA method can probably not be successfully applied. If for any reason a given contaminated site does not offer a small rodent population altogether, or if there is not at least one common small rodent species occurring at both the site of interest and a suitable habitat-matched reference location, or an appropriate reference location cannot be found (see 8.1), the method is not applicable. RSA is intended only to identify if site mammals are reproductively compromised. The method does not concern itself with identifying the chemical(s) or physical site stressors responsible for observed sperm parameter threshold-for-effect exceedances, or the determination of cleanup levels, and such are not method limitations. The situation is analogous to standardized whole effluent toxicity tests conducted with various aquatic test species (for example, Fundulus sp.). There, the objective is only to ascertain if the degree of wastewater treatment is adequate to support the aquatic life inhabiting a receiving waterbody’s mixing zone. (Standard whole effluent toxicity testing is not designed in the main, to identify the constituent or constituents in effluent that may be responsible for unacceptable test outcomes.)5.11 This guide is consistent with ERA guidance and guidelines (26, 27), where advancing to the field for an environmentally relevant assessment of the health of site receptors (so-called ‘field verification’) is a recognized formal step. In understanding that sufficient time has elapsed at contaminated sites for reproductive compromise to be evident (if that endpoint was ever to be triggered), this guide is designed to document such demonstrated compromise. Critically, RSA is not a risk assessment method that aims to forecast or predict health effects arising in mammals with ongoing contaminant exposures. The guide then is related to, but distinctly different from other ASTM standards that bear on the toxicological effects prediction aspect of ERA (Guides E1527-13, E1689, E1848-96, E2081, E2205-02, E2616, and E2790). The guide is also consistent with guidelines for reproductive toxicity risk assessment as per the U.S. EPA (19). Specifically, assessing the reproductive health of only one sex of a species is deemed adequate for an overall species assessment (17). In one key area however, this guide is quite unlike conventional ERAs that are largely restricted to the level of desktop analysis. Whereas conventional assessments rely on either statistically-significant differences in outcome, or on a commonly negotiated difference in biological response (for example, 20 %) when drawing conclusions, this guide primarily avails itself to the utility of a series of established biologically-significant thresholds alluded to previously (22-25). Further, a statistical comparison need only be applied for one of two possible RSA outcomes (see 9.3.1 and 9.4).1.1 This guide describes the procedures for obtaining and interpreting data associated with a direct health status assessment for mammalian receptors at chemically contaminated terrestrial sites where ERA work is either scheduled or ongoing, and irrespective of the number and type of chemicals that may be present. Through reviewing sperm features, the RSA method reports on the reproductive health of male rodents in their natural environmental settings, with these animals serving as surrogates for other (and larger) site mammals (4).1.2 These procedures are applicable at any terrestrial property that supports small mammals (for example, mice, voles, rats, squirrels) and has contaminated soil. Importantly, chemicals of concern in site soils need not be spermatoxins. Additionally, the RSA method considers that any combination of chemicals or other site stressors might collectively act to compromise reproduction, held to be a sensitive toxicological endpoint for mammals. The anticipated primary application of the method will be at historically contaminated sites (such as Superfund sites). The procedures describe tasks conducted in the field and in a laboratory. For the latter, tasks may be conducted either in an on-site mobile laboratory, or in a more conventional laboratory setting. For certain tasks, a make-shift work space may be suitable as well (see 7.3).1.3 Initial determinations of compromised or non-compromised reproduction in resident male small rodents are made through a cautious comparative review of sperm parameters. Briefly, for the rodents of a given species collected at both a contaminated site and a habitat-matched (non-contaminated) reference location, arithmetic means are first computed for each of the three sperm parameters of count, motility, and morphology. If one or more of the parameter means of the contaminated site rodents reflect an unfavorable shift (that is, count or motility is less than that of reference location animals; the percentage of abnormally-shaped sperm is greater relative to reference location animals), the percent decrease or increase in each mean is compared to the relevant established sperm parameter benchmark, each in the form of that degree of shift in an unfavorable direction that signifies lesser reproductive success (2) (see 9.3).1.4 Advanced determinations of compromised or non-compromised reproduction in larger site-contacting mammals, the true focus of the RSA method and this guide, are made through an applied spatial movements-based extrapolation scheme. Where established sperm parameter benchmark exceedances are not observed in contaminated-site rodents, other mammals contacting a site are also assumed to have non-compromised reproduction. This follows from the latter all having notably lesser degrees of site exposure due to home ranges that are vastly larger than those of rodents. By way of example, with respective home ranges of 400+ and 640 acres for the red fox and white-tailed deer (10-14), these species would spend minimal amounts of their time (for example, 5 %) at prototypical contaminated sites that cover areas of 25 acres or less (15, 16). Where one or more sperm parameter benchmarks are exceeded in contaminated-site rodents (certainly indicating that the rodents are reproductively compromised), other site mammals may also be reproductively compromised. The greater the disparity between the home ranges of the target species (that is, the site rodent) and any of the other mammals known to contact the contaminated site in question, the less likely it will be that the latter are reproductively compromised. The RSA method employs the same toxicological extrapolation principles as that used for mammals in conventional desktop-based ERAs. In those ERAs, stressor-mediated responses of rodents (of a laboratory-based study) assist with the interpretation of health effects for an expanded list of mammals that cannot conveniently be evaluated directly for health status (for example, fox, skunk, raccoon, deer, coyote, etc.).1.5 This guide is arranged as follows:  Section 1Referenced Documents 2Terminology 3Summary of Guide 4 5Safety Precautions 6Apparatus 7Procedure 8Reporting 9Keywords 101.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The purpose of this guide is to provide a logical, tiered approach in the development of environmental health criteria coincident with level and effort in the research, development, testing, and evaluation of new materials for military use. Various levels of uncertainty are associated with data collected from previous stages. Following the recommendation in the guide should reduce the relative uncertainty of the data collected at each developmental stage. At each stage, a general weight of evidence qualifier shall accompany each exposure/effect relationship. They may be simple (for example, low, medium, or high confidence) or sophisticated using a numerical value for each predictor as a multiplier to ascertain relative confidence in each step of risk characterization. The specific method used will depend on the stage of development, quantity and availability of data, variation in the measurement, and general knowledge of the dataset. Since specific formulations, conditions, and use scenarios may not be known until the later stages, exposure estimates can be determined when practical (for example, Engineering and Manufacturing Development; see 6.6). Exposure data can then be used with other toxicological data collected from previous stages in a quantitative risk assessment to determine the relative degree of hazard.5.2 Data developed from the use of this guide are designed to be consistent with criteria required in weapons and weapons system development (for example, programmatic environment, safety and occupational health evaluations, environmental assessments/environmental impact statements, toxicity clearances, and technical data sheets).5.3 Information shall be evaluated in a flexible manner consistent with the needs of the authorizing program. This requires proper characterization of the current problem. For example, compounds may be ranked relative to the environmental criteria of the prospective alternatives, the replacement compound, and within bounds of absolute environmental values. A weight of evidence (evaluation of uncertainty and variability) must also be considered with each criterion at each stage to allow for a proper assessment of the potential for adverse environmental or occupational effects; see 6.8.5.4 This standard approach requires environment, safety, and occupational health (ESOH) technical experts to determine the magnitude of the hazard and system engineers/researchers to evaluate the acceptability of the risk. Generally, the higher developmental stages require a higher managerial level of approval.1.1 This guide is intended to determine the relative environmental influence of new substances, consistent with the research and development (R&D) level of effort and is intended to be applied in a logical, tiered manner that parallels both the available funding and the stage of research, development, testing, and evaluation. Specifically, conservative assumptions, relationships, and models are recommended early in the research stage, and as the technology is matured, empirical data will be developed and used. Munition constituents are included and may include propellants, oxidizers, explosives, binders, stabilizers, metals, dyes, and other compounds used in the formulation to produce a desired effect. Munition systems range from projectiles, grenades, rockets/missiles, training simulators, to smokes and obscurants. Given the complexity of issues involved in the assessment of environmental fate and effects and the diversity of the systems used, this guide is broad in scope and not intended to address every factor that may be important in an environmental context. Rather, it is intended to reduce uncertainty at minimal cost by considering the most important factors related to human health and environmental impacts of energetic materials. This guide provides an outline for collecting data useful in a relative ranking procedure to provide the systems scientist with a sound basis for prospectively determining a selection of candidates based on environmental and human health criteria. The general principles in this guide are applicable to substances other than energetics if intended to be used in a similar manner with similar exposure profiles.1.2 The scope of this guide includes:1.2.1 Energetic and other new/novel materials and compositions in all stages of research, development, test and evaluation.1.2.2 Environmental assessment, including:1.2.2.1 Human and ecological effects of the unexploded energetics and compositions on the environment.1.2.2.2 Environmental transport mechanisms of the unexploded energetics and composition.1.2.2.3 Degradation and bioaccumulation properties.1.2.3 Occupational health impacts from manufacture and use of the energetic substances and compositions to include load, assembly, and packing of the related munitions.1.3 Given the wide array of applications, the methods in this guide are not prescriptive. They are intended to provide flexible, general methods that can be used to evaluate factors important in determining environmental consequences from use of new substances in weapon systems and platforms.1.4 Factors that affect the health of humans as well as the environment are considered early in the development process. Since some of these data are valuable in determining health effects from generalized exposure, effects from occupational exposures are also included.1.5 This guide does not address all processes and factors important to the fate, transport, and potential for effects in every system. It is intended to be balanced effort between scientific and practical means to evaluate the relative environmental effects of munition compounds resulting from intended use. It is the responsibility of the user to assess data quality as well as sufficiently characterize the scope and magnitude of uncertainty associated with any application of this standard.1.6 Integration of disparate information and data streams developed from using the methods described in this guide is challenging and may not be straight-forward. Professional assistance from subject matter experts familiar with the fields of toxicology and risk assessment is advised.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method for determining fineness of cleaned flax fibers is considered satisfactory for acceptance testing of commercial shipments when the levels are controlled by use of a range of calibration standards.5.1.1 If there are differences of practical significance between reported test results for two or more laboratories, comparative tests should be performed by those laboratories to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use test samples that are as homogenous as possible, are drawn from the material from which the disparate test results were obtained, and are randomly assigned in equal numbers to each laboratory for testing. These test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The resistance that a plug of flax fibers offers to the flow of air is measured as an approximate indication of the average relative fineness of the fibers.5.2.1 The total surface area of finer fibers has a larger per unit mass and increased resistance to airflow than do coarser fibers.5.3 Instruments are available to indicate the resistance to air flow using either compressed air or a vacuum; and are constructed (1) to measure airflow under constant pressure drop across the plug, (2) to measure pressure drop when a constant flow of air is maintained, or (3) to indicate resistance to air flow from both a balanced and unbalanced Wheatstone bridge.5.4 The reliability of the results of any test method depends primarily upon how well the specimens tested represent the original source material. Flax fibers are different from many textile fibers, such as cotton or synthetic ones, in that they are not individual filaments but bundles of fibrous material that may or may not be completely separated into individual filaments and therefore have a high degree of variability. While cleaning and processing can produce separation and changes in length, there is no certainty of fibrillation of the fibrous material.NOTE 3: A modification of this test method can be used in commercial trading to select bales that will conform to contract guarantees for specified specific surface index. For this purpose, the usual practice to test only one specimen per sample.5.4.1 This specific surface index reading is related to the average linear density of single fibers in a bundle calculated from mass and length measurements on the bundle and the number of single fibers in the bundle.5.5 The specific surface index of flax fibers may be a function of fineness, degree of retting, cleanliness, variety, bundle separation, and plant maturity harvest date. This fineness of flax fibers affects their mill processing and spinning performance as well as contributes significantly to the appearance and strength of the yarns produced.5.6 The accuracy of weighing can be controlled by the number of fibers composing the bundle. However, with short fiber of low linear density the number of fibers to be counted becomes prohibitive unless the bundle mass is kept low.1.1 This test method provides two options that cover the determination of the fineness of clean loose flax fibers by: Option 1, measuring the specific surface area by the resistance of a plug of flax fibers to air flow under prescribed conditions, or Option 2, estimating the mass per unit length.NOTE 1: For other methods for determining the fineness of fibers refer to Appendix X1.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Although a number of different methods have been used to assess backdrafting and spillage (see NFPA 54, CAN/CGSB-51.71, and 1-4)6 a single well-accepted method is not yet available. At this point, different methods can yield different results. In addition, advantages and drawbacks of different methods have not been evaluated or described.5.2 To provide a consistent basis for selection of methods, this guide summarizes different methods available to assess backdrafting and spillage. Advantages and limitations of each method are addressed.5.3 One or more of the methods described in this guide should be performed when backdrafting or spillage from vented combustion appliances is suspected to be the cause of a potential problem such as elevated carbon monoxide (CO) levels or excessive moisture.5.4 The following are examples of specific conditions under which such methods could be performed:5.4.1 When debris or soot is evident at the draft hood, indicating that backdrafting may have occurred in the past,5.4.2 When a new or replacement combustion appliance is added to a residence,5.4.3 When a new or replacement exhaust device or system, such as a downdraft range exhaust fan, a fireplace, or a fan-powered radon mitigation system, is added,5.4.4 When a residence is being remodeled or otherwise altered to increase energy efficiency, as with various types of weatherization programs, and5.4.5 When a CO alarm device has alarmed and a combustion appliance is one of the suspected causes of the alarm.5.5 Depending on the nature of the test(s) conducted and the test results, certain preventive or remedial actions may need to be taken. The following are examples:5.5.1 If any of the short-term tests indicates a potential for backdrafting, and particularly if more than one test indicates such potential, then the appliance and venting system should be further tested by a qualified technician, or remedial actions could be taken in accordance with 5.5.3.5.5.2 If continuous monitoring indicates that backdrafting is occurring, and particularly if it indicates that spillage is occurring that impacts indoor air quality (for example, elevated CO concentrations or excessive moisture in the house), then remedial action is indicated.5.5.3 Possible remedial actions include the following:5.5.3.1 At a minimum, a CO alarm device could be installed in the house.5.5.3.2 Limiting the use of devices or systems that increase house depressurization, such as fireplaces and high-volume exhaust fans. Proper sealing of any air leakage sites, especially at the top floor ceiling level, can also reduce house depressurization at the lower levels of the house.5.5.3.3 Partially opening a window in the furnace or appliance room, if available. Keeping the door nearest the appliance room open at all times or putting louvers in the door.5.5.3.4 Providing increased makeup air for the appliance (for example, by providing a small duct or opening to the outdoors near the appliance).5.5.4 If remedial actions are not successful, then consideration can be given to correcting or replacing the venting system or, if necessary, replacing the spilling appliance with one that can better tolerate house depressurization.5.6 The understanding related to backdrafting and spillage phenomena is evolving. Comprehensive research using a single, reliable method is needed to better understand the frequency, duration, and severity of depressurization-induced spillage in a broad cross section of homes (5). In the absence of a single well-accepted method for assessing the potential for or occurrence of backdrafting or spillage, alternative methods are presented in this guide. The guide is intended to foster consistent application of these methods in future field work or research. The resultant data will enable informed decisions on relative strengths and weaknesses of the different methods and provides a basis for any refinements that may be appropriate. Continued efforts along these lines will enable the development of specifications for a single method that is acceptable to all concerned.1.1 This guide describes and compares different methods for assessing the potential for, or existence of, depressurization-induced backdrafting and spillage from vented residential combustion appliances.1.2 Assessment of depressurization-induced backdrafting and spillage is conducted under either induced depressurization or natural conditions.1.3 Residential vented combustion appliances addressed in this guide include hot water heaters and furnace. The guide also is applicable to boilers.1.4 The methods given in this guide are applicable to Category I (draft-hood- and induced-fan-equipped) furnaces. The guide does not apply to Category III (power-vent-equipped) or Category IV (direct-vent) furnaces.1.5 The methods in this guide are not intended to identify backdrafting or spillage due to vent blockage or heat-exchanger leakage.1.6 This guide is not intended to provide a basis for determining compliance with code requirements on appliance and venting installation, but does include a visual assessment of the installation. This assessment may indicate the need for a thorough inspection by a qualified technician.1.7 Users of the methods in this guide should be familiar with combustion appliance operation and with making house-tightness measurements using a blower door. Some methods described in this guide require familiarity with differential-pressure measurements and use of computer-based data-logging equipment.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This guide does not purport to address all safety concerns, if any, associated with its use. It is the responsibility of the user to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use. Carbon monoxide (CO) exposure or flame roll-out may occur when performing certain procedures given in this guide. See Section 7, for precautions that must be taken in conducting such procedures.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

Plastics that are designed to degrade after use have been developed. These materials are intended to enhance existing solid waste landfill diversion programs by allowing difficult to recycle materials to be collected and processed in alternative solid waste disposal systems. Composting has emerged as a viable approach to process these materials and the organic fraction of municipal solid waste (MSW). A comprehensive testing program is needed to establish the compostability (for example, fragmentation rate, biodegradation rate, and safety) of these materials.This guide can be adapted to generate product-specific evidence for the substantiation of compostable claims to obtain classification as a compostable product.Note 4—State and local regulations should also be considered.1.1 This guide covers suggested criteria, procedures, and a general approach to establish the compostability of environmentally degradable plastics.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1—There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This guide describes the use of test methods in Guides F3275 and F3276 to assess the service life of a brush part intended to clean a medical device.5.2 In the case of a brush part intended to clean a lumen, the force required to move a brush part within a tube, an indicator of the friction a brush exerts on a surface, is a measurable parameter that can change over time and will decrease as the brush part loses integrity.5.3 In the case of a brush part intended to clean the external surface, the force required to move the brush across a surface and the pressure the brush exerts on that surface are measurable parameters that can change over time and will decrease as the brush part loses integrity.5.4 By providing objective, repeatable methods for evaluating performance under test conditions, this guide can improve the ability to assess the effectiveness of various brush part designs.1.1 This guide describes methods for assessing the service life, under prescribed laboratory conditions, of a brush part designed to clean a medical device. The method utilizes force testers to mechanically actuate a brush part at a constant rate. This action continues until the brush part demonstrates a significant reduction in cleaning power as measured by the force exerted during testing.1.2 The test methods utilized in this guide are those described in Guides F3275 and F3276. In this guide, the number of repetitions is open-ended and determined by the measurable fatigue of the brush part as measured by a reduction in force, as well as any observation of wear or damage to the brush part.1.3 Brushes designed to clean medical devices after clinical use play an important role in the effective reprocessing of those medical devices. Instructions for use from the brush manufacturer should supply information related to the service life of the brush. This may be stated in terms of (1) a time period; (2) the number of uses; (3) inspection of the brush for wear and damage.1.4 Inspection for wear should always be a part of the instructions for use of a brush. Application of this guide can help to determine like mode(s) of observable failure of a brush part.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
46 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页