微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method provides accurate biobased/biogenic carbon content results to materials whose carbon source was directly in equilibrium with CO2 in the atmosphere at the time of cessation of respiration or metabolism, such as the harvesting of a crop or grass living in a field. Special considerations are needed to apply the testing method to materials originating from within artificial environments with non-natural levels of 14C or if the biofeed was grown over the course of several years such as trees and contains “bomb-carbon.” Application of these test methods to materials derived from CO2 uptake within artificial environments is beyond the present scope of this standard.5.2 This method uses LSC techniques to quantify the biobased content of a liquid hydrocarbon fuels using sample carbon that has been unmodified. It is designed to be able to incorporate into a refinery laboratory to support biofeed and petroleum coprocessing or blending operations to determine the biocarbon content of the intermediate or finished products. The test results can then be used for optimizing internal parameters or reporting to regulatory agencies.5.3 The use of this method requires that a pure petroleum-based sample can be generated that has a similar matrix to each product or stream to be analyzed. For example, gasoline and diesel have very different matrices and will likely require the use of different background measurements for each. Refer to 10.2 for how to determine if the same background sample can be used for more than one product/stream.1.1 This test method covers quantitatively determining biocarbon content of liquid hydrocarbon fuels with a focus on those produced in a typical petroleum refinery using liquid scintillation counting (LSC). The method is designed to generate analogous results as Test Method D6866 Method C, for low quench samples, without the need of benzene synthesis. The purpose is to be able to use the produced data to report biocarbon content of refinery products to regulatory agencies and monitor refinery operation. The method does not address regulatory reporting or fuel performance.1.2 The method is needed to support refinery operations when bio-feeds are co-processed with petroleum within a reactor with a focus on samples with 100 % biocarbon or less (not for 14C labeled species). It allows refineries to report the biocarbon content of refinery products to regulatory agencies such as the Environmental Protection Agency (EPA) or California Air Resources Board (CARB) to comply with regulatory statutes such as The Renewable Fuel Standard (RFS) or Low Carbon Fuel Standard (LCFS).1.3 This test method is applicable to any liquid fuel product, petroleum based (pure hydrocarbon), biobased (such as renewable diesel or those that can contain oxygenates such as ethanol), or blends, that contain 1 % to 100 % by mass biocarbon where an instrument background can be experimentally determined using a sample of similar matrix that contains no measurable carbon-14.1.4 This test method makes no attempt to teach the basic principles of the instrumentation used although minimum requirements for instrument selection are referenced in Refs (1-11).2 However, the preparation of samples for the above test methods is described. No details of instrument operation are included here. These are best obtained from the manufacturer of the specific instrument in use.1.5 Pre-Requisite Requirements For Method Execution—This test method uses artificial carbon-14 (14C) within the method. Great care shall be taken to prevent laboratory contamination of the elevated 14C. Once in the laboratory, artificial 14C can contaminate a variety of laboratory surfaces that can lead to artificially high sample biocarbon measurements. If vigorous cleaning attempts to remove the artificial 14C from a laboratory are unsuccessful, instrumentation and sample preparation may have to be moved to a new laboratory away from the contamination or the laboratory may have to rely on outside third-party labs for analysis. Specific procedural steps have been incorporated into this method that minimize the risk of sample and lab contamination. Wipe tests and quality assurance samples can validate absence of contamination. In the event of contamination in the laboratory or instrument, vigorous cleaning protocols shall be implemented, and analysis cannot be resumed until the lab and instrument are free of contamination. Accepted requirements are:1.5.1 Working with the elevated 14C samples in a separate and defined area away from the instrument and the preparation of any non-spiked samples.1.5.2 Using separate personnel to prepare the spiked samples and non-spiked samples.1.5.3 Using separate laboratory spaces with separate HVAC systems for the handling of spiked and non-spiked samples. The use of separate fume hoods that have separate exhaust ventilation satisfies this requirement.1.5.4 Weekly wipe tests of 14C sample handling area(s) to detect lab contamination.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The carbon isotope analysis is designed to be an adjunct to other information in determination of biobased content, specifically the manufacturer’s records. It is also a means of verifying the authenticity of a disputed lot of material which may be manufactured by different means, from different raw materials. FTIR or other chemical analysis means will identify the molecule as being ethanol, but not give indication of the source (that is, fossil carbon versus modern carbon). The carbon isotopes will give both indication of source and the presence of a mixture of sources.4.2 Representative sampling and handling methods are clearly a prerequisite to obtaining accurate results from the radiocarbon composition determination and any other quantitative analytical method.4.3 This guide provides for accurate and complete reporting of the sample collection, handling, chain of custody, sample preparation and treatment that allows any independent party to assess the validity of the reported biobased content of the material.1.1 This guide provides a framework for collecting and handling samples for determination of biobased content of materials by means of the carbon isotope method described in Test Methods D6866. Tests for sampling adequacy based on the standard statistical tools are provided. In addition, reporting of the results, including sampling techniques and handling procedures and chain-of-custody issues are discussed.1.2 This guide is concerned with collecting representative samples within a given material or a lot, not with lot-to-lot variations such as considered in quality control schemes.1.3 Biobased materials often represent sampling problems specific to a given material, such as heterogeneity, and so forth, which require employment of material-specific sampling methods. The use of specialized sampling methods already accepted and validated by industries that manufacture and/or use the biomaterial is encouraged. However, all sampling techniques, especially non-standard techniques developed for specific materials must be reported in sufficient detail to allow critical assessment of the techniques used.1.4 Carbon isotope analysis involves thermal processing in presence of oxidants. Compatibility of any given material with Test Methods D6866 must be assessed. Special attention must be given to materials with potential for explosion hazards, such as peroxides, nitrated compounds, azides, and so forth. Examples of peroxide-forming compounds are ethers, some ketones and a number of other compounds.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.Note 1—There is no known ISO equivalent to this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

A schematic of the sequence of steps involved in development of a LCA is shown in Fig. 1. A life cycle assessment (LCA) consists of four independent elements (see Fig. 1), which have been standardized internationally (ISO 14040 series Standards, 1997-1999). These are:5.1.1 Definition of goal and scope,5.1.2 Life cycle inventory analysis (LCI),5.1.3 Life cycle impact assessment (LCIA), and5.1.4 Life cycle interpretation.FIG. 1 Overview Process for Evaluating and Reporting Environmental Performance of Biobased Products1.1 Environmental performance shall be measured using the life-cycle assessment (LCA) approach. LCA is a "cradle-to-grave" approach that evaluates all stages in the life of a product, including raw material acquisition, product manufacture, transportation, use and ultimately, recycling (that is, "cradle to cradle" and waste management).1.2 LCAs for biobased products shall be conducted and communicated in a similar manner, including consistent boundary conditions, functional units, environmental indicators, and reporting formats.1.3 This practice is limited to environmental performance metrics and excludes other metrics such as those related to economics and social equity.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Biobased materials are considered a means to reduce the consumption of nonrenewable resources and reduce the environmental impact associated with the creation of materials and products, such as increased CO2 emissions and so forth. The U.S. Government has expressed the desire to use its buying power to promote usage of biobased materials, as evidenced in Presidential Orders 13101 and 13123 and the recently passed Farm Security and Rural Investment Act of 2002 (P.O. 107 - 171.).This guide provides a vendor with a standardized process to develop and compile information on the total resources consumed in creation of a product, define what fraction of the resources are biobased, and transmit the information in a clear and logical way. Carbon is the foundation of both biobased and fossil (nonrenewable) resources. Carbon also represents a large fraction of the environmental profile considerations of a product. Therefore carbon is used in this guide to combine and track energy and raw materials resources consumption involved in creation of a product.This guide provides a way to determine and report weight fraction of biobased material in a product, or its biobased content, W(b).This guide also provides for verification and validation of the information supplied by vendors to support their product claims.This guide provides a way to determine the biobased and nonrenewable (fossil) resource consumption, both as raw materials and as energy, involved in creation of a product and to combine the biobased and nonrenewable resources into total resource consumption on a consistent basis.A companion standard5 provides a test method for authentication of the origin of carbon claimed to be derived from renewable resources.1.1 This guide covers a process to determine (1) biobased content of materials and products, (2) total resource consumption, both biobased and nonrenewable, in the form of raw materials and energy, and (3) an environmental profile, which would also include emissions and waste generated.1.2 Reference to the use of factors to convert materials and energy to carbon equivalents are provided (1-6). In addition, the use of ISO standards to determine the material and energy inventories and an environmental profile of the products and materials is discussed. It is outside the scope of this guide to provide a detailed description of the use and application of life cycle assessment tools and conversion factors for the determination of a biobased material's environmental profile. Future ASTM International standards are being prepared to cover these subjects.1.3 In the application of this guide, the protection of business confidential information is an important consideration. In general, the level of detail required to evaluate material and energy inputs and outputs can be reported without revealing proprietary unit process information. Unit processes can be treated as black boxes with inputs and outputs. If business confidentiality is still a concern, unit processes can be further combined or the final LCA (Life Cycle Assessment) results can be reviewed and certified by an external, independent expert with which the vendor will have the appropriate secrecy agreement.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This testing method provides accurate biobased/biogenic carbon content results to materials whose carbon source was directly in equilibrium with CO2 in the atmosphere at the time of cessation of respiration or metabolism, such as the harvesting of a crop or grass living its natural life in a field. Special considerations are needed to apply the testing method to materials originating from within artificial environments. Application of these testing methods to materials derived from CO2 uptake within artificial environments is beyond the present scope of this standard.4.2 Method B utilizes AMS along with Isotope Ratio Mass Spectrometry (IRMS) techniques to quantify the biobased content of a given product. Instrumental error can be within 0.1-0.5 % (1 relative standard deviation (RSD)), but controlled studies identify an inter-laboratory total uncertainty up to ±3 % (absolute). This error is exclusive of indeterminate sources of error in the origin of the biobased content (see Section 22 on precision and bias).4.3 Method C uses LSC techniques to quantify the biobased content of a product using sample carbon that has been converted to benzene. This test method determines the biobased content of a sample with a maximum total error of ±3 % (absolute), as does Method B.4.4 The test methods described here directly discriminate between product carbon resulting from contemporary carbon input and that derived from fossil-based input. A measurement of a product’s 14C/12C or 14C/13C content is determined relative to a carbon based modern reference material accepted by the radiocarbon dating community such as NIST Standard Reference Material (SRM) 4990C, (referred to as OXII or HOxII). It is compositionally related directly to the original oxalic acid radiocarbon standard SRM 4990B (referred to as OXI or HOxI), and is denoted in terms of fM, that is, the sample’s fraction of modern carbon. (See Terminology, Section 3.)4.5 Reference standards, available to all laboratories practicing these test methods, must be used properly in order that traceability to the primary carbon isotope standards are established, and that stated uncertainties are valid. The primary standards are SRM 4990C (oxalic acid) for 14C and RM 8544 (NBS 19 calcite) for 13C. These materials are available for distribution in North America from the National Institute of Standards and Technology (NIST), and outside North America from the International Atomic Energy Agency (IAEA), Vienna, Austria.4.6 Acceptable SI unit deviations (tolerance) for the practice of these test methods is ±5 % from the stated instructions unless otherwise noted.1.1 This standard is a test method that teaches how to experimentally measure biobased carbon content of solids, liquids, and gaseous samples using radiocarbon analysis. These test methods do not address environmental impact, product performance and functionality, determination of geographical origin, or assignment of required amounts of biobased carbon necessary for compliance with federal laws.1.2 These test methods are applicable to any product containing carbon-based components that can be combusted in the presence of oxygen to produce carbon dioxide (CO2) gas. The overall analytical method is also applicable to gaseous samples, including flue gases from electrical utility boilers and waste incinerators.1.3 These test methods make no attempt to teach the basic principles of the instrumentation used although minimum requirements for instrument selection are referenced in the References section. However, the preparation of samples for the above test methods is described. No details of instrument operation are included here. These are best obtained from the manufacturer of the specific instrument in use.1.4 Limitation—This standard is applicable to laboratories working without exposure to artificial carbon-14 (14C). Artificial 14C is routinely used in biomedical studies by both liquid scintillation counter (LSC) and accelerator mass spectrometry (AMS) laboratories and can exist within the laboratory at levels 1,000 times or more than 100 % biobased materials and 100,000 times more than 1% biobased materials. Once in the laboratory, artificial 14C can become undetectably ubiquitous on door knobs, pens, desk tops, and other surfaces but which may randomly contaminate an unknown sample producing inaccurately high biobased results. Despite vigorous attempts to clean up contaminating artificial 14C from a laboratory, isolation has proven to be the only successful method of avoidance. Completely separate chemical laboratories and extreme measures for detection validation are required from laboratories exposed to artificial 14C. Accepted requirements are:(1) disclosure to clients that the laboratory(s) working with their products and materials also works with artificial 14C(2) chemical laboratories in separate buildings for the handling of artificial 14C and biobased samples(3) separate personnel who do not enter the buildings of the other(4) no sharing of common areas such as lunch rooms and offices(5) no sharing of supplies or chemicals between the two(6) quasi-simultaneous quality assurance measurements within the detector validating the absence of contamination within the detector itself. (1, 2, and 3)21.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: ISO 16620-2 is equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
5 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页