微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Use as an Analytical Tool—Mathematical methods provide an analytical tool to be employed for many applications related to absorbed dose determinations in radiation processing. Mathematical calculations may not be used as a substitute for routine dosimetry in some applications (for example, medical device sterilization, food irradiation).4.2 Dose Calculation—Absorbed-dose calculations may be performed for a variety of photon/electron environments and irradiator geometries.4.3 Evaluate Process Effectiveness—Mathematical models may be used to evaluate the impact of changes in product composition, loading configuration, and irradiator design on dose distribution.4.4 Complement or Supplement to Dosimetry—Dose calculations may be used to establish a detailed understanding of dose distribution, providing a spatial resolution not obtainable through measurement. Calculations may be used to reduce the number of dosimeters required to characterize a procedure or process (for example, dose mapping).4.5 Alternative to Dosimetry—Dose calculations may be used when dosimetry is impractical (for example, granular materials, materials with complex geometries, material contained in a package where dosimetry is not practical or possible).4.6 Facility Design—Dose calculations are often used in the design of a new irradiator and can be used to help optimize dose distribution in an existing facility or radiation process. The use of modeling in irradiator design can be found in Refs (2-7).4.7 Validation—The validation of the model should be done through comparison with reliable and traceable dosimetric measurements. The purpose of validation is to demonstrate that the mathematical method makes reliable predictions of dose and other transport quantities. Validation compares predictions or theory to the results of an appropriate experiment. The degree of validation is commensurate with the application. Guidance is given in the documents referenced in Annex A2.4.8 Verification—Verification is the confirmation of the mathematical correctness of a computer implementation of a mathematical method. This can be done, for example, by comparing numerical results with known analytic solutions or with other computer codes that have been previously verified. Verification should be done to ensure that the simulation is appropriate for the intended application. Refer to 3.1.24.NOTE 2: Certain applications of the mathematical model deal with Operational Qualification (OQ), Performance Qualification (PQ) and process control in radiation processing such as the sterilization of healthcare products. The application and use of the mathematical model in these applications may have to meet regulatory requirements. Refer to Section 6 for prerequisites for application of a mathematical method and Section 8 for requirements before routine use of the mathematical method.4.9 Uncertainty—An absorbed dose prediction should be accompanied by an estimate of overall uncertainty, as it is with absorbed-dose measurement (refer to ISO/ASTM 51707 and JCGM100:2008 and JCGM200:2012). In many cases, absorbed-dose measurement helps to establish the uncertainty in the dose calculation.4.10 This guide should not be used as the only reference in the selection and use of mathematical models. The user is encouraged to contact individuals who are experienced in mathematical modelling and to read the relevant publications in order to select the best tool for their application. Radiation processing is an evolving field and the references cited in the annotated examples of Annex A6 are representative of the various published applications. Where a method is validated with dosimetry, it becomes a benchmark for that particular application.1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose.1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document.1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV.1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods.1.5 This guide is limited to the use of general purpose software packages for the calculation of the transport of charged or uncharged particles and photons, or both, from various types of sources of ionizing radiation. This standard is limited to the use of these software packages or other mathematical methods for the determination of spatial dose distributions for photons emitted following the decay of 137Cs or 60Co, for energetic electrons from particle accelerators, or for X-rays generated by electron accelerators.1.6 This guide assists the user in determining if mathematical methods are a useful tool. This guide may assist the user in selecting an appropriate method for calculating absorbed dose. The user must determine whether any of these mathematical methods are appropriate for the solution to their specific application and what, if any, software to apply.NOTE 1: The user is urged to apply these predictive techniques while being aware of the need for experience and also the inherent limitations of both the method and the available software. Information pertaining to availability and updates to codes for modeling radiation transport, courses, workshops and meetings can be found in Annex A1. For a basic understanding of radiation physics and a brief overview of method selection, refer to Annex A3.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The calculations of analytical data for the coal and coke test parameters listed in Section 6, assume the analysis sample has been prepared according to Practice D2013 and Test Method D3302.4.2 This practice provides formulas, to enable calculations of data from the as-determined analysis sample to various moisture bases, in common use by the coal and coke industry.4.3 This practice provides guidance to enable calculations of weight-average data from various lots or sublots, which, initially, are provided at different moisture bases.4.4 The principles given in this practice are applicable to the calculation of cumulative data (e.g., for trade purposes or for sieve analyses or washability analyses).1.1 This practice lists formulas that allow analytical data to be expressed in various bases in common use. Such bases are: as received, dry, equilibrium moisture, dry ash free, and others.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Solar reflectance and thermal emittance are important factors affecting surface and near-surface ambient air temperature. Surfaces with low solar reflectance, absorb a high fraction of the incoming solar energy. A fraction of this absorbed energy is conducted into ground and buildings, a fraction is convected to air (leading to higher air temperatures), and a fraction is radiated to the sky. For equivalent conditions, the lower the emissivity of a surface the higher its steady-state temperature. Surfaces with low emissivity cannot effectively radiate to the sky and, therefore, get hot. Determination of solar reflectance and thermal emittance, and subsequent calculation of the relative temperature of the surfaces with respect to black and white reference temperature (defined as Solar Reflectance Index, SRI), may help designers and consumers to choose the proper materials to make their buildings and communities energy efficient. The method described here gives the SRI of surfaces based on measured solar reflectances and thermal emissivities of the surfaces.1.1 This practice covers the calculation of the Solar Reflectance Index (SRI) of horizontal and low-sloped opaque surfaces at standard conditions. The method is intended to calculate SRI for surfaces with emissivity greater than 0.1.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These procedures cover the chemical analysis by the lime ignition method of treating solutions containing pentachlorophenol and of wood treated with pentachlorophenol. The method is suitable for the determination of up to 0.05 g of pentachlorophenol in treating solutions (Section ), up to 0.05 g of pentachlorophenol in wood volumes up to 0.25 in.3 (Section 11), and up to 0.25 g of pentachlorophenol in wood volumes up to 2.0 in.3 (Section ).1.2 This test method is not applicable to samples containing halogens other than chlorine unless appropriate correction can be made. Total halogen (excluding fluorine) is calculated as its pentachlorophenol equivalent of chloride.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice should be used only to compare specimens of the same material and same general appearance. For example, a series of specimens to be compared should have generally similar gloss, texture, and (if not opaque) thickness, and translucency.5.2 For yellowness measurement, this practice is limited to specimens having dominant wavelength in the range 570 to 580 nm, or Munsell hue approximately 2.5GY to 2.5Y. For whiteness measurement, this practice is limited to specimens having Munsell value greater than 8.3 (CIE Y greater than 65) and Munsell chroma no greater than 0.5 for B hues, 0.8 for Y hues, and 0.3 for all other hues (see 3.3.1).5.3 The combination of measurement and calculation leading to indices of yellowness or whiteness is a psychophysical process, that is, the procedures specified are designed to provide numbers correlating with visual estimates made under specified typical observing conditions. Because visual observing conditions can vary widely, users should compare calculated indices with visual estimates to ensure applicability. Some standards addressing the visual estimation of color and color difference are Practices D1535, D1729, E1360, and E1541, and Guide E1499.5.4 This practice does not cover the preparation of specimens, a procedure that may affect significantly the quantities measured. In general, specimens should be prepared and presented for measurement in the manner that is standard for the test being performed. Select enough specimens or specimen areas to provide an average result that is representative of each sample to be tested. See Practice E1345.1.1 This practice provides numbers that correlate with visual ratings of yellowness or whiteness of white and near-white or colorless object-color specimens, viewed in daylight by an observer with normal color vision. White textiles, paints, and plastics are a few of the materials that can be described by the indices of yellowness or whiteness calculated by this practice.1.2 For a complete analysis of object colors, by a specified observer and under a specified illuminant, use of three parameters is required. For near-white specimens, however, it is often useful to calculate single-number scales of yellowness or whiteness. This practice provides recommended equations for such scales and discusses their derivations and uses, and limits to their applicability (see also Ref (1)2).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Physical constants of paints and coatings are required in all aspects of their formulation, manufacture and use. This practice demonstrates standard methods agreed upon for calculating formulation values for some of these physical constants. The calculations are the same for either metric or inch/pound units.4.2 These formula values may not be used to replace measured values required by government regulations unless specifically stated in the governing documents.4.3 Some regulations allow compliance determination using formulation data instead of analytical data. This formulation data may not yield the same results as the required analytical method, which could be performed on a sample from any production batch of the coating. In these cases, the user may wish to compare formulation data to analytical data and develop a factor that adjusts for variability of raw materials, variability of production batches, cure volatiles, and variability of the analytical methods.1.1 This practice covers procedures commonly used in the paint industry to formulate paints and coating materials. It describes procedures for calculating formulation values for weight solids, volume solids, solvent content, volatile organic compound (VOC) content, hazardous air pollutant (HAP) content, and density of liquid paints and coatings. These values are calculated from basic formulation data. These calculations may be related to either as-supplied (unreduced) or as-applied (reduced) coating materials, including multicomponent types.1.2 These calculated, formulation-based values may or may not be acceptable for VOC regulatory purposes, depending on the specific wording of the applicable regulation. Some regulations require analysis of the coating. Some rules allow the use of formulation data, however, some adjustments may be needed to the values calculated in this practice before they are used for regulatory purposes (see 4.3).1.3 For purposes of this practice, it is assumed that volatile components evaporate and the materials that remain are identified as coating solids. For example, solvents are normally used to adjust viscosity for application and appearance of the coating. Other liquid materials, such as plasticizers, reactive diluents, etc., that are expected to be retained in the dried film to affect the final physical properties should be classified as part of the coating solids. Standards such as Test Methods D2369, D4758, D5403, and Guide D2832 may be used to determine volatile or nonvolatile content of specific components. For purposes of this practice it is assumed that the blended formulation behaves as an ideal solution with no volume change on mixing (see 6.2).1.4 Volatile by-products of cross-linking reactions (cure volatiles) are not considered in these calculations since the object of this practice is to define paint physical constants based on formulation information. Variations in raw materials, variations in the production processes, test methods, and test method accuracy are not taken into account in these calculations.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. However, they may be readily converted into SI units, if required by the user (for example, see Note 4).1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 Sensory thresholds are used to determine the potential of substances at low concentrations to impart odor, taste, skinfeel, etc. to some form of matter.6.2 Thresholds are used, for example, in setting limits in air pollution, in noise abatement, in water treatment, and in food systems.6.3 Thresholds are used to characterize and compare the sensitivity of individuals or groups to given stimuli, for example, in medicine, ethnic studies, and the study of animal species.1.1 The definitions and procedures of this practice apply to the calculation of individual thresholds for any stimulus in any medium, from data sets of intermediate size, that is, consisting of more than 20 to 40 3-AFC presentations per individual. A group threshold may be calculated using 5 to 15 individual thresholds.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Test Methods E119 and E1529, and other standard fire resistance test methods specify that throughout exposures to fire and the hose stream, a constant superimposed axial load be applied to a load-bearing test specimen to simulate a maximum load condition. These test methods specify that this superimposed load shall be as nearly as practicable the maximum allowable axial design load allowed by design under nationally recognized structural design criteria. For this practice, the nationally recognized structural design criteria is the National Design Specification (NDS) for Wood Construction4.1.1 Alternatively, the standard fire resistance test methods shall be conducted by applying an axial load that is less than the maximum allowable axial design load as addressed by the NDS and this practice, but these tests shall be identified in the test report as being conducted under restricted load conditions.4.1.2 The superimposed axial load, as well as the superimposed axial load as a percentage of the maximum allowable axial design load for the stud and as a percentage of the maximum allowable design load for the plate, shall be calculated using the Allowable Stress Design (ASD) method in the NDS and this practice shall be included in the test report.NOTE 1: The NDS should be used to ensure calculation of the superimposed load is in compliance with all applicable provisions of that document. Appendix X1 describes how to calculate the superimposed load in accordance with the NDS.4.2 This practice describes procedures for calculating the superimposed axial load to be applied in standard fire resistance tests of wood-frame wall assemblies.4.3 Statements in either the fire resistance test method standard or the nationally recognized structural design standard supersede any procedures described by this practice.1.1 This practice covers procedures for calculating the superimposed axial load required to be applied to load-bearing wood-frame walls throughout standard fire-resistance and fire and hose-stream tests.1.2 The calculations determine the maximum load allowed by design for wood-frame wall assemblies under nationally recognized structural design criteria.1.3 This practice is only applicable to those wood-frame assemblies for which the nationally recognized structural design criteria are contained in the National Design Specification for Wood Construction (NDS).21.4 The system of units to be used is that of the nationally recognized structural design criteria. For the NDS, the units are inch-pound.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E2586-19e1 Standard Practice for Calculating and Using Basic Statistics Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This practice provides approaches for characterizing a sample of n observations that arrive in the form of a data set. Large data sets from organizations, businesses, and governmental agencies exist in the form of records and other empirical observations. Research institutions and laboratories at universities, government agencies, and the private sector also generate considerable amounts of empirical data.4.1.1 A data set containing a single variable usually consists of a column of numbers. Each row is a separate observation or instance of measurement of the variable. The numbers themselves are the result of applying the measurement process to the variable being studied or observed. We may refer to each observation of a variable as an item in the data set. In many situations, there may be several variables defined for study.4.1.2 The sample is selected from a larger set called the population. The population can be a finite set of items, a very large or essentially unlimited set of items, or a process. In a process, the items originate over time and the population is dynamic, continuing to emerge and possibly change over time. Sample data serve as representatives of the population from which the sample originates. It is the population that is of primary interest in any particular study.4.2 The data (measurements and observations) may be of the variable type or the simple attribute type. In the case of attributes, the data may be either binary trials or a count of a defined event over some interval (time, space, volume, weight, or area). Binary trials consist of a sequence of 0s and 1s in which a “1” indicates that the inspected item exhibited the attribute being studied and a “0” indicates the item did not exhibit the attribute. Each inspection item is assigned either a “0” or a “1.” Such data are often governed by the binomial distribution. For a count of events over some interval, the number of times the event is observed on the inspection interval is recorded for each of n inspection intervals. The Poisson distribution often governs counting events over an interval.4.3 For sample data to be used to draw conclusions about the population, the process of sampling and data collection must be considered, at least potentially, repeatable. Descriptive statistics are calculated using real sample data that will vary in repeating the sampling process. As such, a statistic is a random variable subject to variation in its own right. The sample statistic usually has a corresponding parameter in the population that is unknown (see Section 5). The point of using a statistic is to summarize the data set and estimate a corresponding population characteristic or parameter, or to test a hypothesis.4.4 Descriptive statistics consider numerical, tabular, and graphical methods for summarizing a set of data. The methods considered in this practice are used for summarizing the observations from a single variable. The descriptive statistics described in this practice are: mean, median, min, max, range, mid range, order statistic, quartile, empirical percentile, quantile, interquartile range, variance, standard deviation, Z-score, coefficient of variation, and skewness and kurtosis.4.5 Statistical inference is drawing conclusions about the population or its parameters. Methods for statistical inference described in this practice are: degrees of freedom, standard error, confidence intervals, prediction intervals, tolerance intervals, and statistical hypothesis tests.4.6 Tabular methods described in this practice are: frequency distribution, relative frequency distribution, cumulative frequency distribution, and cumulative relative frequency distribution.4.7 Graphical methods described in this practice are: histogram, ogive, boxplot, dotplot, normal probability plot, and q-q plot.4.8 While the methods described in this practice may be used to summarize any set of observations, the results obtained by using them may be of little value from the standpoint of interpretation unless the data quality is acceptable and satisfies certain requirements. To be useful for inductive generalization, any sample of observations that is treated as a single group for presentation purposes must represent a series of measurements, all made under essentially the same test conditions, on a material or product, all of which have been produced under essentially the same conditions. When these criteria are met, we are minimizing the danger of mixing two or more distinctly different sets of data.4.8.1 If a given collection of data consists of two or more samples collected under different test conditions or representing material produced under different conditions (that is, different populations), it should be considered as two or more separate subgroups of observations, each to be treated independently in a data analysis program. Merging of such subgroups, representing significantly different conditions, may lead to a presentation that will be of little practical value. Briefly, any sample of observations to which these methods are applied should be homogeneous or, in the case of a process, have originated from a process in a state of statistical control.4.9 The methods developed in Sections 6, 7, 8, and 9 apply to the sample data. There will be no misunderstanding when, for example, the term “mean” is indicated, that the meaning is sample mean, not population mean, unless indicated otherwise. It is understood that there is a data set containing n observations. The data set may be denoted as:4.9.1 There is no order of magnitude implied by the subscript notation unless subscripts are contained in parenthesis (see 6.7).AbstractThis practice covers methods and equations for computing and presenting basic statistics. This practice includes simple descriptive statistics for variable and attribute data, elementary methods of statistical inference, and tabular and graphical methods for variable data. Some interpretation and guidance for use is also included.This practice provides approaches for characterizing a sample of n observations that arrive in the form of a data set. Large data sets from organizations, businesses, and governmental agencies exist in the form of records and other empirical observations. Research institutions and laboratories at universities, government agencies, and the private sector also generate considerable amounts of empirical data.1.1 This practice covers methods and equations for computing and presenting basic statistics. This practice includes simple descriptive statistics for variable and attribute data, elementary methods of statistical inference, and tabular and graphical methods for variable data. Some interpretation and guidance for use is also included.1.2 The system of units for this practice is not specified. Dimensional quantities in the practice are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This practice shall only be used on soils having infiltration rates ranging from 2.5 mm/h (field hydraulic conductivity of 6.9 × 10-7 m/s) to 15000 mm/h (field hydraulic conductivity of 4.0 × 10-3 m/s).5.2 This practice is useful for field measurement of the infiltration rate and calculation of field hydraulic conductivity of soils. It was initially developed for stormwater treatment applications, and has been used to design, verify the construction of, and perform annual testing on surface drainage applications such as rain gardens or storm water collection systems (1). Other suitable applications include evaluation of potential septic-tank disposal fields (ASTM D5879 and D5921), leaching and drainage efficiencies, irrigation requirements, erosion potential, forestry, agriculture, and water spreading and recharge, among other applications. This test is not intended for use in hydraulic barriers/seals such as landfill liners, nuclear waste repositories, or the core of a dam. This test is also not intended for use in soils that experience changes in volume during infiltration, such as collapsible or expansive soils.5.3 Field hydraulic conductivity can only be calculated when the hydraulic boundary conditions are known, such as hydraulic gradient and the extent of lateral flow of water, or these can be reliably estimated.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.5.4 A mathematical analysis has been developed for this test that follows the Green-Ampt analysis that assumes a relationship between the volumetric water content and the depth of the wetting front, in that volumetric water content profile at the wetting front is represented by a sharp transition between the initial value in the ground and that of saturated soil, that is, the porosity (1), (2).5.5 Many factors affect the infiltration rate, for example the soil structure, soil layering, condition of the soil surface, degree of saturation of the soil, chemical and physical nature of the soil and of the applied liquid, head of the applied liquid, temperature of the liquid, and diameter and depth of embedment of rings. Thus, tests made at the same site are not likely to give identical results and the rate measured by the practice described in this standard is primarily for comparative use.1.1 This practice describes a procedure for field measurement of the infiltration rate of liquid (typically water) into soils using the modified Philip Dunne (MPD) infiltrometer. The data from the field measurement is then used to calculate the field hydraulic conductivity. Soils should be regarded as natural occurring fine or coarse-grained soils or processed materials or mixtures of natural soils and processed materials, or other porous materials, and which are basically insoluble and are in accordance with requirements of 5.1.1.2 This practice may be conducted at the ground surface or at given depths in pits, on bare soil or with vegetation in place, depending on the conditions for which infiltration rates are desired. However, this practice cannot be conducted where the test surface is at or below the groundwater table, a perched water table, or the capillary fringe.1.3 This practice is for soils within a range of infiltration rate range defined in 5.1, as long as an adequate seal can be made between the MPD Infiltrometer base and the soil being tested. In highly permeable soils, readings can be taken at shorter intervals, to ensure that enough data are collected to determine the infiltration rate.1.4 The field measurement is a falling head test that can be performed relatively quickly (30 to 60 minutes) in silty sand or clayey sand soils suitable for stormwater infiltration practices. It is suitable for testing several locations across a site, to characterize the spatial variability of the infiltration rate throughout the site.1.5 The field measurement can be used to measure the infiltration rate, which can be used to calculate the field hydraulic conductivity. The field hydraulic conductivity can be used as an index to compare the suitability of soils for use in the development of surface drainage applications (for example, rain gardens or stormwater fills).1.6 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are to be included in this standard.1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.8 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
40 条记录,每页 10 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页