微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Benzene is classed as a toxic and carcinogenic material. A knowledge of the concentration of this compound may be an aid in evaluating the possible health hazards to persons handling and using hydrocarbon solvents, but this test method is not intended to evaluate such hazards.1.1 This test method covers the determination by gas chromatography of benzene at levels from 0.01 to 1 volume % in hydrocarbon solvents.NOTE 1: For benzene levels lower than 0.01 volume %, use Test Method D6229.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 For purposes of determining conformance of an observed or a calculated value using this test method to relevant specifications, test result(s) shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.4 For hazard information and guidance, see the supplier's Material Safety Data Sheet. For specific hazard statements, see Section 7.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the specified individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range of 0.01 % mass to approximately 30 % mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedure is used for components with concentrations outside the specified ranges.1.3 The test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range of 1 % mass to 30 % mass. However, the cooperative study data provided sufficient statistical data for MTBE only.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic (for example, virgin naphthas), or both, constituents above n-octane may reflect significant errors in PONA type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this procedure is applicable to samples containing less than 25 % mass of olefins. However, some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Caution should also be exercised when analyzing olefin-free samples using this test method as some of the paraffins may be reported as olefins since analysis is based purely on retention times of the eluting components.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent volume) or other test methods, such as those based on multidimensional PONA type of instruments (Test Method D6839).1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744, or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and D5623 for sulfur compounds, or equivalent.1.6 Annex A1 of this test method compares results of the test procedure with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toluene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using specific test methods.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 This test method measures the molecular weight distribution and molecular weight averages of polyethylene (except LDPE and UHMWPE) and polypropylene resins. Differences in molecular weight and molecular weight distribution significantly affect physical properties, such as morphology, strength, melt flow etc., and as a result, the final properties of products made from these resins.1.1 This test method covers the determination of molecular weight distributions and molecular weight averages of polyolefins by high temperature gel permeation chromatography (GPC). This test method uses commercially available polystyrene standards and equipment and is applicable to polyethylenes (excluding high pressure low density polyethylene (LDPE) and ultra-high molecular weight polyethylene (UHMWPE)) and polypropylenes soluble in 1,2,4-trichlorobenzene (TCB) at 140°C. This test method is not absolute and requires calibration.NOTE 1: Size exclusion chromatography (SEC) often is used as an alternative name for gel permeation chromatography (GPC).NOTE 2: Specific methods and capabilities of users may vary with differences in columns, instrumentation, applications software, and practices between laboratories.NOTE 3: One general method is outlined herein; alternative analytical practices can be followed and are attached in notes where appropriate.NOTE 4: There is no known ISO equivalent to this standard.1.2 The values stated in SI units, based on IEEE/ASTM S1-10, are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.5.2 This test method is adopted from earlier development and enhancement.4,5,6,7 The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).5.3 Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.5.4 If water is or is suspected of being present, its concentration is determined by the use of Test Method D1744. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D4815 and D5599 for oxygenates, Test Method D5580 for aromatics, and Test Method D5623 for sulfur compounds.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range from 0.01 % to approximately 30 % by mass. The test method may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the test method is used for components with concentrations outside the specified ranges.1.3 This test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range from 1 % to 30 % by mass. However, the cooperative study data provided insufficient statistical data for obtaining a precision statement for these compounds.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA-type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this test method is applicable to samples containing less than 25 % by mass of olefins. However, some interfering co-elution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Annex A1 of this test method compares results of the test method with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toulene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using the specific test methods listed in the reference section.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent by volume) or other test methods, such as those based on multidimentional PONA-type of instruments.1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744 or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and Test Method D5623 for sulfur compounds, or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

5.1 Residue in LPG is a contaminant that can lead to operational problems in some end use applications. Engines, micro-turbines, fuel cells and other equipment may be sensitive to residue levels as low as 10 mg/kg.5.2 Contamination of LPG can occur during production, transport, delivery, storage and use. A qualitative indication of the contaminants can help track down the source of the contamination from manufacture, through the distribution system, and to the end user.5.3 This test method is designed to provide a lower detection limit, wider dynamic range, and better accuracy than gravimetric methods like Test Method D2158.5.4 This test method can be performed with little or no discharge of LPG vapors, compared to Test Method D2158 which requires evaporation of 100 mL of sample per test.5.5 Sampling for residue in LPG using sorbent tubes can be performed in the field, and the sorbent tubes sent to a laboratory for analysis. This saves significant costs in shipping (weight of tube is approximately 10 grams), and is much safer and easier than transporting LPG cylinders.5.6 This test method determines total residues from C6 to C40, compared to a thermal gravimetric residue method such as Test Method D2158 which heat the residue to 38°C, resulting in a lower recovery due to loss of lighter residue components.5.7 If there is a need to decrease the detection limit of residue or individual compounds of interest below 10 µg/g, the procedures in this test method can be modified to achieve 50 times enhanced detection limit, or 0.2 µg/g.1.1 This test method covers the determination of residue in LPG by automated thermal desorption/gas chromatography (ATD/GC) using flame ionization detection (FID).1.2 The quantitation of residue covers a component boiling point range from 69°C to 522°C, equivalent to the boiling points of C6 through C40 n-paraffins.1.2.1 The boiling range covers possible LPG contaminants such as gasoline, diesel fuel, phthalates and compressor oil. Qualitative information on the nature of the residue can be obtained from this test method.1.2.2 Materials insoluble in LPG and components which do not elute from the gas chromatograph or which have no response in a flame ionization detector are not determined.1.2.3 The reporting limit (or limit of quantitation) for total residue is 6.7 µg/g.1.2.4 The dynamic range of residue quantitation is 6.7 to 3300 µg/g.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Low operating temperature fuel cells such as proton exchange membrane (PEM) fuel cells require high purity hydrogen for maximum material performance and lifetime. Analysis to part-per-billion (ppb) concentration of individual cation contaminants such as potassium, sodium and ammonium in hydrogen and related fuel cell supply gases is necessary for assuring a feed gas of sufficient purity to satisfy fuel cell system needs. More specifically, cations such as ammonium causes irreversible performance degradation of proton exchange membranes used in low temperature fuel cells by reacting with protons in the membrane to form ammonium ions.Although not intended for application to gases other than hydrogen and related fuel cell supply gases, techniques within this test method can be applied to other gaseous samples requiring cation analysis.1.1 This test method describes a procedure for the determination of cations in hydrogen and other fuel cell feed gases. It has been successfully applied to other types of gaseous samples including air, engine exhaust, and landfill samples. An ion chromatograph/conductivity detector (IC/CD) system is used to determine cations. Sensitivity from low part per billion (ppb, μg/l, μg/kg) up to part per million (ppm, mg/l, mg/kg) concentration are achievable dependant on the amount of hydrogen or other fuel cell gas sampled. This test method can be applied to other gaseous samples requiring analysis of trace constituents provided an assessment of potential interferences has been accomplished.1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The presence of trace amounts of hydrogen, oxygen, carbon monoxide, and carbon dioxide can have deleterious effects in certain processes using hydrocarbon products as feed stock. This test method is suitable for setting specifications, for use as an internal quality control tool, and for use in development and research work.1.1 This test method covers the determination of hydrogen, nitrogen, oxygen, methane, carbon monoxide, and carbon dioxide in the parts per billion mole (nmol/mol) to parts per million mole (µmol/mol) range in C2 and C3 hydrocarbons.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For some specific hazard statements, see Annex A1.1.3.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Tall oil fractionated products derived from tall oil are important commercial materials, primarily composed of fatty acids and rosin acids, but also containing some neutral material (see Terminology D804). For many applications, it is necessary to know the level of the individual fatty acids and rosin acids present in these products. Gas chromatography has proven to be a useful tool for such determinations (see Test Methods D509), and capillary chromatography, described in these test methods, is considered to be the most effective gas chromatographic technique currently available. In particular situations, other techniques may be more suitable than gas chromatography. For example, the presence of fatty acid esters in the sample would result in transesterification during the derivatization step that may affect the results.3.2 Due to hydrogen bonding, unmodified tall oil fatty acids and rosin acids cannot be volatilized at atmospheric pressure without undergoing decomposition. So, it is necessary to convert the free acids to the more volatile and more stable methyl esters, prior to chromatographic separation.3.3 These test methods describe four ways to prepare methyl esters. The classic method is through the use of diazomethane, but diazomethane is a hazardous and toxic material, and so is no longer the preferred agent. The use of diazomethane is detailed in Appendix X1.3.3.1 TMAH causes isomerization of a sample’s di- and polyunsaturated fatty acids, when it is used in even a slight excess. This leads to inaccurate results for the individual fatty acid components. TMAH should be used for materials containing only rosin acids, or when the identification or quantitation of individual fatty acid components is not important.3.3.2 TMPAH is the recommended methylating agent when the identification or quantitation of individual di- and polyunsaturated fatty acids is required. TMPAH produces results that are very similar to those of diazomethane, but without the hazards that are associated with diazomethane. A considerable excess of TMPAH may cause isomerization of conjugated compounds similar to that encountered with TMAH.3.3.3 DMF-DMA gives results comparable to TMPAH and is easy and safe to use. However, the reagent is moisture sensitive, requiring samples to be free of any significant levels of water.3.4 Two test methods for calculating the amounts of the individual fatty acid and rosin acid methyl esters are included in these test methods. When the actual weight percentage of a given compound is required, the “internal standard” method must be used. This method involves adding a known amount of an internal standard to a known amount of test material, and comparing the area of the peak associated with the internal standard with the area of the peak of the individual fatty acid or rosin acid methyl esters. The “area percent” method will give the relative amount of each component, by comparing the area of the appropriate peak to the total area of all peaks. Non-eluting compounds will lead to erroneous (absolute) results with this method.PREPARATION OF METHYL ESTERSNOTE 1: Any of these three methods can be used, with the choice being dependent on the factors mentioned in 3.3.1.1 These test methods cover the determination of the amounts of the individual fatty acids and rosin acids in fractionated tall oil products, using capillary gas chromatographic separation of the volatile methyl esters of these acids.1.2 Four methods for forming the methyl esters, and two methods for determining the amounts of the individual fatty acids and rosin acids are described.1.2.1 The classic method for the formation of methyl esters is through the use of diazomethane, but diazomethane is a hazardous and toxic material, and so is no longer the preferred reagent. The use of diazomethane is detailed in the Appendix. Methyl esters may be formed through the use of tetramethylammonium hydroxide (TMAH), trimethylphenylammonium hydroxide (TMPAH), or N,N-dimethylformamide dimethyl acetal (DMF-DMA).1.2.2 The two methods for determining the amount of the individual fatty acids and rosin acids are the “internal standard” method, which yields absolute values, and the “area percent” method, which yields relative values.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as, blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels. The tables in Annex A1 enumerate the components reported. Component concentrations are determined in the range from 0.10 % to 15 % by mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedures are used for components with concentrations outside the specified ranges.1.2 This test method is applicable also to spark-ignition engine fuel blends containing oxygenated components. However, in this case, the oxygenate content must be determined by Test Methods D5599 or D4815.1.3 Benzene co-elutes with 1-methylcyclopentene. Benzene content must be determined by Test Method D3606 or D5580.1.4 Toluene co-elutes with 2,3,3-trimethylpentane. Toluene content must be determined by Test Method D3606 or D5580.1.5 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this procedure is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that error may be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA type groupings. Based on the interlaboratory cooperative study, this procedure is applicable to samples having concentrations of olefins less than 20 % by mass. However, significant interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Many of the olefins in spark ignition fuels are at a concentration below 0.10 %; they are not reported by this test method and may bias the total olefin results low.1.5.1 Total olefins in the samples may be obtained or confirmed, or both, by Test Method D1319 (volume %) or other test methods, such as those based on multidimensional PONA type of instruments.1.6 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744. Other compounds containing sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D5623 for sulfur compounds.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 Butadiene dimer and styrene may be present as impurities in commercial butadiene. This test method is suitable for use in internal quality control and in establishing product specifications.1.1 This test method covers the determination of butadiene dimer (4-vinylcyclohexene-1) and styrene in butadiene concentrates, both recycle and specification grade.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements see Sections 6 and 8.1.3.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 In hydrocarbon type analyses of gasolines, highly volatile fuels can need to be stabilized by depentanization (Test Method D2001) prior to analysis. A knowledge of the composition of light hydrocarbons in the overhead from the depentanization process is useful in converting analyses of the depentanized fraction to a total sample basis.1.1 This test method covers the determination of the two (C2) through five (C5-) carbon paraffins and mono-olefins in gasolines. The concentrations by volume or mass (weight) of the following components are generally reported:1.1.1 Ethylene plus ethane1.1.2 Propane1.1.3 Propylene1.1.4 Isobutane1.1.5 n-Butane1.1.6 Butene-1 plus isobutylene1.1.7 trans-Butene-21.1.8 cis-Butene-21.1.9 Isopentane1.1.10 3-Methylbutene-11.1.11 n-Pentane1.1.12 Pentene-11.1.13 2-Methylbutene-11.1.14 trans-Pentene-21.1.15 cis-Pentene-21.1.16 2-Methylbutene-21.2 This test method does not cover the determination of cyclic olefins, diolefins, or acetylenes. These are usually minor components in finished gasolines.1.3 Samples to be analyzed should not contain significant amounts of material boiling lower than ethylene.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4.1 Exception—Alternative units, in common usage, are also provided to improve the clarity and aid the user of this test method.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 PFAS are widely used in various industrial and commercial products; they are persistent, bio-accumulative, and ubiquitous in the environment. PFAS have been reported to exhibit developmental toxicity, hepatotoxicity, immunotoxicity, and hormone disturbance. PFAS have been detected in soils, sludges, surface, and drinking waters. This is a quick, easy, and robust method to quantitatively determine these compounds at trace levels in water matrices.5.2 This test method has been validated using reagent water and waters from sites that include landfill leachate, metal finisher, POTW Effluent, Hospital, POTW Influent, Bus washing station, Power Plant and Pulp and paper mill effluent for selected PFAS, refer to the Precision and Bias (Section 17).1.1 This test method covers the determination of per- and polyfluoroalkyl substances (PFASs) in aqueous matrices using liquid chromatography (LC) and detection with tandem mass spectrometry (MS/MS). These analytes are co-solvated by a 1+1 ratio of sample and methanol then qualitatively and quantitatively determined by this test method. Quantitation is by selected reaction monitoring (SRM) or sometimes referred to as multiple reaction monitoring (MRM).1.2 The method detection limit (MDL) (see Note 1) and reporting range (see Note 2) for the target analytes are listed in Table 1. The target concentration for the reporting limit for this test method is an integer value that is calculated from the concentration from the lowest standard from the final volume of the prepared sample. This value may be lower than the calculated MDL due to sporadic PFAS hits due to PFAS contamination in consumables/collection tools used during sample collection and preparation. All samples should be taken at a minimal as duplicates in order to compare the precision between the two prepared samples to help ensure the concentration/positive result is reliable.NOTE 1: The MDL is determined following the Code of Federal Regulations (CFR), 40 CFR Part 136, Appendix B utilizing dilution and filtration. A detailed process determining the MDL is explained in the reference and is beyond the scope of this test method.NOTE 2: Injection volume variations, and sensitivity of the instrument used will change the reporting limit and ranges.1.2.1 Recognizing continual advancements in the sensitivity of instrumentation, advancements in column chromatography and other processes not recognized here, the reporting limit may be lowered assuming the minimum performance requirements of this test method at the lower concentrations are met.1.2.2 Depending on data usage, you may modify this test method but limit to modifications that improve performance while still meeting or exceeding the method quality acceptance criteria. Modifications to the solvents, ratio of solvent to sample, or shortening the chromatographic run simply to save time are not allowed. Use Practice E2935 or similar statistical tests to confirm that modifications produce equivalent results on non-interfering samples. In addition, use Guide E2857 or equivalent statistics to re-validate the modified test.1.2.3 Analyte detections between the method detection limit and the reporting limit are estimated concentrations. The reporting limit is based upon the concentration of the Level 1 calibration standard as shown in Table 5.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

3.1 Although it is possible to observe and measure each of the several characteristics of the ELCD under different and unique conditions, in particular its different modes of selectivity, it is the intent of this practice that a complete set of detector specifications should be obtained at the same operating conditions, including geometry, gas and solvent flow rates, and temperatures. It should be noted that to specify a detector's capability completely, its performance should be measured at several sets of conditions within the useful range of the detector. The terms and tests described in this practice are sufficiently general so that they may be used at whatever conditions may be chosen for other reasons.3.2 Linearity and speed of response of the recorder used should be such that it does not distort or otherwise interfere with the performance of the detector. Effective recorder response should be sufficiently fast so that it can be neglected in sensitivity of measurements. If additional amplifiers are used between the detector and the final readout device, their characteristics should also first be established.1.1 This practice covers testing the performance of an electrolytic conductivity detector (ELCD) used as the detection component of a gas chromatographic system.1.2 This practice is directly applicable to electrolytic conductivity detectors that perform a chemical reaction on a given sample over a nickel catalyst surface under oxidizing or reducing conditions and employ a scrubber, if needed, to remove interferences, deionized solvent to dissolve the reaction products, and a conductivity cell to measure the electrolytic conductivity of ionized reaction products.1.3 This practice covers the performance of the detector itself, independently of the chromatographic column, in terms that the analyst can use to predict overall system performance when the detector is coupled to the column and other chromatographic system components.1.4 For general gas chromatographic procedures, Practice E260 should be followed except where specific changes are recommended herein for the use of an electrolytic conductivity detector. For definitions of gas chromatography and its various terms see Practice E355.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Accurate gas chromatographic determination of trace levels of thiophene in benzene involves special analytical problems because of the difficulties of trace level analysis. These problems arise from the low concentration levels that need to be measured, the type of column and detector needed for analysis, and the potential interference from the benzene matrix.4.2 This test method was found applicable for determining thiophene in refined benzene conforming to the specifications described in Specifications D2359, D4734, and D5871 and may be applicable toward other grades of benzene if the user has taken the necessary precautions as described in the text.4.3 This test method was developed as an alternative technique to Test Method D4735.1.1 This test method covers the determination of thiophene in refined benzene using gas chromatography and sulfur selective detection. The test method is applicable to the determination of thiophene at levels of 0.02 to 2.18 mg thiophene per kg in benzene (mg/kg) on the AED, 0.03 to 1.87 mg/kg on the PFPD, and 0.03 to 2.11 mg/kg on the SCD. The range of the test method may be extended by modifying the sample injection volume, split ratios, calibration range, or sample dilution with thiophene-free solvent.1.2 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
286 条记录,每页 15 条,当前第 1 / 20 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页