微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The weighing of collected aerosol is one of the most common and purportedly simple analytical procedures in both occupational and environmental atmospheric monitoring (for example, Test Method D4532 or D4096). Problems with measurement accuracy occur when the amount of material collected is small, owing both to balance inaccuracy and variation in the weight of that part of the sampling medium that is weighed along with the sample. The procedures presented here for controlling and documenting such analytical errors will help provide the accuracy required for making well-founded decisions in identifying, characterizing, and controlling hazardous conditions.4.2 Recommendations are given as to materials to be used. Means of controlling or correcting errors arising from instability are provided. Recommendations as to the weighing procedure are given. Finally, a method evaluation procedure for estimating weighing errors is described.4.3 Recommendations are also provided for the reporting of weights relative to LOD (see 3.2.6) and LOQ (see 3.2.7). The quantities, LOD and LOQ, are computed as a result of the method evaluation.1.1 Assessment of airborne aerosol hazards in the occupational setting entails sampling onto a collection medium followed by analysis of the collected material. The result is generally an estimated concentration of a possibly hazardous material in the air. The uncertainty in such estimates depends on several factors, one of which relates to the specific type of analysis employed. The most commonly applied method for analysis of aerosols is the weighing of the sampled material. Gravimetric analysis, though apparently simple, is subject to errors from instability in the mass of the sampling medium and other elements that must be weighed. An example is provided by aerosol samplers designed to collect particles so as to agree with the inhalable aerosol sampling convention (see ISO 7708, Guide D6062, and EN 481). For some sampler types, filter and cassette are weighed together to make estimates. Therefore, if the cassette, for example, absorbs or loses water between the weighings required for a concentration estimation, then errors may arise. This practice covers such potential errors and provides solutions for their minimization.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide is intended to provide general guidance to HHW programs for accepting and segregating materials, selecting a management method, and packaging materials collected by HHW programs.1.1 This guide covers Household Hazardous Waste (HHW) programs for accepting, segregating, and packaging materials collected through HHW programs to minimize the risk associated with managing these materials and to identify applicable regulations. This guide does not address storing, vehicle loading, or transporting collected and packaged materials. This guide does not attempt to define the hazardous nature of materials.1.2 Certain existing local, state, and federal regulations apply to HHW program operations. This guide does not replace these existing regulations, and is not intended to be used as the basis for regulations for HHW programs. This guide does not reference all applicable applications, since applicable regulations will vary. HHW programs should research all applicable regulations before establishing a materials collection program.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this guide to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Promulgations by the U.S. Federal Occupational Safety and Health Administration (OSHA) in 29 CFR 1910 designate that certain organic compounds must not be present in workplace atmospheres at concentrations above specified values.5.2 This test method, when used in conjunction with Practice D3686, will promote needed accuracy and precision in the determination of airborne concentrations of many of the organic chemicals including but not limited to 29 CFR 1910, CDC-99-74-45, NIOSH Manual of Analytical Methods, OSHA Sampling and Analytical Methods, and HSE Methods for the Determination of Hazardous Substances. It can be used to determine worker exposures to these chemicals, provided appropriate sampling periods are used.5.3 Most laboratories are equipped with apparatus similar to that described in Section 7. Other apparatus can be used when analytical procedures suitable for that equipment are employed. The analytical techniques (or variations thereof) described in Sections 9 – 11 are in general use to analyze volatile organic compounds extracted from charcoal. Other procedures can be used when appropriate and validated as being suitable for the intended use.1.1 This test method describes the extraction and gas chromatographic determination of organic vapors that have been adsorbed from air in sampling tubes packed with activated charcoal.1.2 This test method is complementary to Practice D3686.1.3 This test method is applicable for analysis of samples taken from workplace or other atmospheres provided that the contaminant adsorbs onto charcoal, that it can be adequately extracted from the charcoal, and that it can be analyzed by gas chromatography (GC). Other adsorbents and other extraction techniques are described in Practice D6196.1.4 Organic compounds of multicomponent samples may mutually interfere during analysis. Methods to resolve interferences are given in Section 6.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautions are given in 8.5, 9.2, and in X1.2.3.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Contractual or local regulation, or both, permitting, the FPAPV calculated according to this practice can be used to represent the average property of the quantity of material collected.4.2 Due to the averaging and appropriate weighting of analysis results, the FPAPV estimate of the property for the collected material is expected to be more representative and more precise than an estimate based on a small number of analyses on a few samples.NOTE 1: For applications where the on-line analyzer system result is being used in direct feedback control in a contiguous manner, the true property distribution for a large population of batches with essentially identical FPAPV's is expected to be Gaussian, centered at the FPAPV value, with a standard deviation that is no less than the long term site precision standard deviation of the analyzer system.4.3 If the measured property value is used to predict another property value through the use of an appropriate correlation equation, the FPAPV can also be used as a suitable prediction of that property.4.4 The most recently updated FPAPV can be used to represent the property of the material currently accumulated in the tank or vessel for process control or material disposition decisions, or both.1.1 This practice covers a technique for calculating a flow-proportioned average property value (FPAPV) for a batch of in-line blended product or process stream material that is collected over time and isolated in a storage tank or vessel, using a combination of on-line or at-line measurements taken at regular intervals of the property and flow rates.1.2 The FPAPV methodology uses regularly collected on- line or at-line process analyzer measurements, flow, and assessment of other appropriate process measurements or values, to calculate a flow-proportioned average property value in accordance with flow quantity units of material produced.1.3 When the collecting vessel contains a heel (retained material prior to receipt of the production batch), both the property value and quantity of the heel material can be predetermined and factored into the calculation of the FPAPV for the new batch.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method evaluates, under carefully controlled conditions, the changes in the mass of a test specimen on exposure under vacuum to a temperature of 125 °C and the mass of those products that leave the specimen and condense on a collector at a temperature of 25 °C.5.2 The 24 h test time does not represent actual outgassing from years of operation, so a higher test temperature shorter time was selected to allow material comparisons with no intent to predict actual outgassing in service. The test temperature of 125 °C was assumed to be significantly above the expected operating temperature in service. If expected operating temperatures exceed 65 to 70 °C the test temperature should be increased. It is suggested that test temperature be at least 30 °C higher than expected maximum service temperature in order to provide material comparisons for TML and CVCM.5.3 Comparisons of material outgassing properties are valid at 125 °C sample temperature and 25°C collector temperature only. Samples tested at other temperatures may be compared only with other materials which were tested at that same temperature.5.4 The measurements of the collected volatile condensable material are also comparable and valid only for similar collector geometry and surfaces at 25 °C. Samples have been tested at sample temperatures from 50 to 400 °C and at collector temperatures from 1 to 30 °C by this test technique. Data taken at nonstandard conditions must be clearly identified and should not be compared with samples tested at 125 °C sample temperature and 25 °C collector temperature.5.5 The simulation of the vacuum of space in this test method does not require that the pressure be as low as that encountered in interplanetary flight (for example, 10−12 Pa (10−14 torr)). It is sufficient that the pressure be low enough that the mean free path of gas molecules be long in comparison to chamber dimensions.5.6 This method of screening materials is considered a conservative one because maximum operating temperatures in service are assumed not to exceed 50 to 60 °C for most applications. It is possible that a few materials will have acceptable properties at the intended use temperature but will be eliminated because their properties are not satisfactory at the test temperature of 125 °C. Also, materials that condense only below 25 °C are not detected. The user may designate additional tests to qualify materials for a specific application.5.7 The determinations of TML and WVR are affected by the capacity of the material to gain or lose water vapor. Therefore, the weighings must be accomplished under controlled conditions of 23 °C and 50 % relative humidity.5.8 Alternatively, all specimens may be put into open glass vials during the 24-h temperature and humidity conditioning. The vials must be capped before removal from the conditioning chamber. Each specimen must be weighed within 2 min after opening the vial to minimize the loss or absorption of water vapor while exposed to an uncontrolled humidity environment. While control of humidity is not necessary at this point, the temperature for the weighing should be controlled at 23 °C, the same temperature prescribed for the 24-h storage test.1.1 This test method covers a screening technique to determine volatile content of materials when exposed to a vacuum environment. Two parameters are measured: total mass loss (TML) and collected volatile condensable materials (CVCM). An additional parameter, the amount of water vapor regained (WVR), can also be obtained after completion of exposures and measurements required for TML and CVCM.1.2 This test method describes the test apparatus and related operating procedures for evaluating the mass loss of materials being subjected to 125 °C at less than 7 × 10−3 Pa (5 × 10−5 torr) for 24 h. The overall mass loss can be classified into noncondensables and condensables. The latter are characterized herein as being capable of condensing on a collector at a temperature of 25°C.NOTE 1: Unless otherwise noted, the tolerance on 25 and 125 °C is ±1 °C and on 23 °C is ±2 °C. The tolerance on relative humidity is ±5 %.1.3 Many types of organic, polymeric, and inorganic materials can be tested. These include polymer potting compounds, foams, elastomers, films, tapes, insulations, shrink tubings, adhesives, coatings, fabrics, tie cords, and lubricants. The materials may be tested in the “as-received” condition or prepared for test by various curing specifications.1.4 This test method is primarily a screening technique for materials and is not necessarily valid for computing actual contamination on a system or component because of differences in configuration, temperatures, and material processing.1.5 The criteria used for the acceptance and rejection of materials shall be determined by the user and based upon specific component and system requirements. Historically, TML of 1.00 % and CVCM of 0.10 % have been used as screening levels for rejection of spacecraft materials.1.6 The use of materials that are deemed acceptable in accordance with this test method does not ensure that the system or component will remain uncontaminated. Therefore, subsequent functional, developmental, and qualification tests should be used, as necessary, to ensure that the material's performance is satisfactory.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Sulfuric acid is used in the manufacture of fertilizer, explosives, dyestuffs, other acids, parchment paper, glue, lead acid batteries, textiles, etc., and in the pickling of metals.5.2 This test method has been found to be satisfactory in the measurement of sulfuric acid for comparison with relevant occupational exposure limits.NOTE 2: In some countries the occupational exposure limit value (OELV) for sulfuric acid is related to the thoracic aerosol fraction; in such cases it is recommended to use a sampler for the thoracic aerosol fraction (ISO 20581).61.1 This ion chromatographic test method describes the determination of sulfuric acid mist in air samples collected from workplace atmospheres on a mixed cellulose ester (MCE) filter.NOTE 1: Other filter types such as quartz fiber, polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC) filters are also suitable.1.2 The lower detection limit of this test method is 0.001 mg/sample or 0.017 mg/m3 of sulfuric acid (H2SO4) mist in 60 L of air sampled at 1 L/min.1.3 This test method is subject to interference from soluble and partially soluble sulfate salts. Other sulfur-containing compounds can be oxidized to sulfate and also interfere.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 No detailed instrument operating instructions are provided because of differences among various makes and models of ion chromatography (IC) systems. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument, analytical column, and suppressors used.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method is applicable for the determination of particulate matter emissions from solid-fuel-burning appliances including woodstoves, pellet-burning appliances, factory-built fireplaces, masonry fireplaces, masonry heaters, indoor furnaces, and indoor and outdoor hydronic heaters within a laboratory environment.1.2 Analytes will be a particulate matter (PM) with no CAS number assigned. For data quality objectives, see Appendix X1.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This test method does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
7 条记录,每页 10 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页