微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0

在线阅读 收 藏
AS 1940:2017 The storage and handling of flammable and combustible liquids 现行 发布日期 :  2017-08-01 实施日期 : 

定价: 1911元 / 折扣价: 1625

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
AS 1692-2006 (R2016) Steel tanks for flammable and combustible liquids 现行 发布日期 :  2006-02-22 实施日期 : 

定价: 689元 / 折扣价: 586

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
AS 1940-2004 The storage and handling of flammable and combustible liquids 现行 发布日期 :  2004-10-29 实施日期 : 

定价: 1417元 / 折扣价: 1205

在线阅读 收 藏
AS 1940-1993 The storage and handling of flammable and combustible liquids 被代替 发布日期 :  1993-10-11 实施日期 : 

定价: 1177元 / 折扣价: 1001 加购物车

在线阅读 收 藏
AS 1692-1989 Tanks for flammable and combustible liquids 废止 发布日期 :  1989-12-11 实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏
C22.2 NO. 152-M1984 (R2006) Combustible Gas Detection Instruments 现行 发布日期 :  1970-01-01 实施日期 : 

This PDF includes GI #2 and #3. 1. Scope 1.1 This Standard covers the details of construction, performance, and test for portable and stationary electrical instruments for sensing the presence of combustible gas or vapour concentrations in air, par

定价: 455元 / 折扣价: 387

在线阅读 收 藏

4.1 Arcing, partial discharge, and localized overheating in the insulation system of transformers result in chemical decomposition of the insulating oil and other insulating materials. This may generate various gases, some of which are combustible. Typically, gases are generated in the oil and then partitioned into the gas space according to their individual solubilities. Gases which are highly oil-soluble, such as acetylene, may not be in significant quantities in the gas space until an incipient fault has progressed to a very serious condition or failure of the transformer. Gases such as carbon monoxide and hydrogen which have low solubilities in oil can make up a large fraction of the combustible gases in the gas space. Detection of these gases is frequently the first available indication of a malfunction. Portable combustible gas meters are a convenient means of detecting the presence of generated gases.4.2 Normal operation of a transformer may result in the formation of some combustible gases. The detection of an incipient fault by this method involves an evaluation of the amount of combustible gases present, the rate of generation of these gases, and their rate of escape from the transformer. Refer to IEEE C57.104 for detailed information on interpretation of gassing in transformers.1.1 This field practice covers the detection and estimation of combustible gases in the gas blanket above the oil or in gas detector relays in transformers using portable instruments. It is applicable only with transformers using mineral oil as the dielectric fluid. Gases dissolved in the oil and noncombustible gases are not determined. A method of calibrating the instruments with a known gas mixture is included.1.2 This practice affords a semi-quantitative estimate of the total combustible gases present in a gas mixture. If a more accurate determination of the total amount of combustible gases or a quantitative determination of the individual components is desired, use a laboratory analytical method, such as Test Method D3612.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The combustible carbon content of solid residues is used to calculate efficiency of fuel combustion in boiler furnaces and similar combustors.5.2 Combustible carbon values are also used to determine the residual fuel value of incompletely combusted/reacted coal and coke in other reactors that consume carbonaceous fuels (examples include fluidized bed furnaces and liquefaction, gasification and pyrolysis reactors).5.3 The combustible carbon content of flyash is an important parameter in the use of flyash as a cement additive.1.1 This test method covers the determination of total, combustible, and carbonate carbon remaining in the solid byproducts of combustion from boiler furnaces and similar reactors, including ash, flyash, char, slag, and similar materials.1.2 This test method is intended for the use of industry to determine the performance of boiler furnaces and similar combustion reactors and aid in determining the quality of the solid residue from combustion.1.3 This test method comprises the use of any of several methods to determine total carbon content combined with any of several methods to determine carbonate carbon, and the calculation, by difference, of the combustible carbon remaining in a sample.1.4 Alternatively, this test method applies to the determination of total carbon remaining in a material after acidification with strong acid to evolve carbonate carbon. In this case, the combustible carbon is the total carbon measured in the sample after acidification.1.5 The values stated in SI units are to be regarded as standard. Non-SI units, if provided, are for information only and are contained within parentheses.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a procedure for performing laboratory tests to evaluate relative deflagration parameters of dusts.5.2 The MEC as measured by this test method provides a relative measure of the concentration of a dust cloud necessary for an explosion.5.3 Since the MEC as measured by this test method may vary with the uniformity of the dust dispersion, energy of the ignitor, and propagation criteria, the MEC should be considered a relative rather than absolute measurement.5.4 If too weak an ignition source is used, the measured MEC would be higher than the “true” value. This is an ignitability limit rather than a flammability limit, and the test could be described as “underdriven.” Ideally, the ignition energy is increased until the measured MEC is independent of ignition energy. However, at some point the ignition energy may become too strong for the size of the test chamber, and the system becomes “overdriven.” When the ignitor flame becomes too large relative to the chamber volume, a test could appear to result in an explosion, while it is actually just dust burning in the ignitor flame with no real propagation beyond the ignitor.5.5 The recommended ignition source for measuring the MEC of dusts in 20-L chambers is a 2500 or 5000 J pyrotechnic ignitor.4 Measuring the MEC at both ignition energies will provide information on the possible overdriving of the system.5 To evaluate the effect of possible overdriving in a 20-L chamber, comparison tests may also be made in a larger chamber, such as a 1 m3-chamber.5.6 If a dust ignites with a 5000 J ignitor but not with a 2500 J ignitor in a 20-L chamber, this may be an overdriven system.5 In this case, it is recommended that the dust be tested with a 10 000 J ignitor in a larger chamber, such as a 1 m3-chamber, to determine if it is actually explosible.5.7 The values obtained by this test method are specific to the sample tested (particularly the particle size distribution) and the method used and are not to be considered intrinsic material constants.1.1 This test method covers the determination of the minimum concentration of a dust-air mixture that will propagate a deflagration in a near-spherical closed vessel of 20 L or greater volume.NOTE 1: The minimum explosible concentration (MEC) is also referred to as the lower explosibility limit (LEL) or lean flammability limit (LFL).1.2 Data obtained from this test method provide a relative measure of the deflagration characteristics of dust clouds.1.3 This test method should be used to measure and describe the properties of materials in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment that takes into account all of the factors that are pertinent to an assessment of the fire hazard of a particular end use.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a procedure for performing laboratory tests to evaluate relative deflagration parameters of dusts.5.2 Knowledge of the limiting oxygen (oxidant) concentration is needed for safe operation of some chemical processes. This information may be needed in order to start up, shut down or operate a process while avoiding the creation of flammable dust-gas atmospheres therein, or to pneumatically transport materials safely. NFPA 69 provides guidance for the practical use of LOC data, including the appropriate safety margin to use.5.3 Since the LOC as measured by this method may vary with the energy of the ignitor and the propagation criteria, the LOC should be considered a relative rather than absolute measurement.5.4 If too weak an ignition source is used, the measured LOC would be higher than the “true” value and would not be sufficiently conservative. This is an ignitability limit rather than a flammability limit, and the test could be described as “underdriven.” Ideally, the ignition energy is increased until the measured LOC is independent of ignition energy (that is, the “true” value). However, at some point the ignition energy may become too strong for the size of the test chamber, and the system becomes “overdriven.” When the ignitor flame becomes too large relative to the chamber volume, a test could appear to result in an explosion, while it is actually just dust burning in the ignitor flame with no real propagation beyond the ignitor (1-3).5 This LOC value would be overly conservative.5.5 The recommended ignition source for measuring the LOC of dusts in 20-L chambers is a 2500-J pyrotechnic ignitor.6 This ignitor contains 0.6 g of a powder mixture of 40 % zirconium, 30 % barium nitrate, and 30 % barium peroxide. Measuring the LOC at several ignition energies will provide information on the possible overdriving of the system to evaluate the effect of possible overdriving in a 20-L chamber, comparison tests may also be made in a larger chamber such as a 1-m3 chamber (1-3).5.6 The values obtained by this testing technique are specific to the sample tested (particularly the particle size distribution) and the method used and are not to be considered intrinsic material constants.NOTE 1: Much of the previously published LOC data (4). were obtained using a spark ignition source in a 1.2-L Hartmann chamber and may not be sufficiently conservative. The European method of LOC determination EN 14034–4 uses two 1000-J pyrotechnic igniters in the 20-L chamber.1.1 This test method is designed to determine the limiting oxygen concentration of a combustible dust dispersed in a mixture of air with an inert/nonflammable gas in a near-spherical closed vessel of 20 L or greater volume.1.2 Data obtained from this method provide a relative measure of the deflagration characteristics of dust clouds.1.3 This test method should be used to measure and describe the properties of materials in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment that takes into account all of the factors that are pertinent to an assessment of the fire hazard of a particular end use.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
20 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页