微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method for the chemical analysis of nickel and nickel alloys is primarily intended to test material for compliance with specifications such as those under jurisdiction of ASTM committee B02. It may also be used to test compliance with other specifications that are compatible with the test method.5.2 It is assumed that all who use this method will be trained analysts capable of performing common laboratory procedures skillfully and safely, and that the work will be performed in a properly equipped laboratory.5.3 This is a performance-based method that relies more on the demonstrated quality of the test result than on strict adherence to specific procedural steps. It is expected that laboratories using this method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory, the specific reference materials employed, and performance acceptance criteria. It is also expected that, when applicable, each laboratory will participate in proficiency test programs, such as described in Practice E2027, and that the results from the participating laboratory will be satisfactory.1.1 This test method describes the inductively coupled plasma mass spectrometric analysis of nickel and nickel allys, as specified by Committee B02, and having chemical compositions within the following limits:Element Application Range (Mass Fraction %)Aluminum 0. 01–6.00Boron 0. 01–0.10Carbon 0. 01–0.15Chromium 0. 01–33.00Copper 0.01–35.00Cobalt 0. 01–20.00Iron 0.05–50.00Magnesium 0. 01–0.020Molybdenum 0. 01–30.0Niobium 0. 01–6.0Nickel 25.00–100.0Phosphorous 0.001–0.025Silicon 0.01–1.50Sulfur 0.0001–0.01Titanium 0.0001–6.0Tungsten 0.01–5.0Vanadium 0.0005–1.01.2 The following elements may be determined using this method.Element Quantification Range (μg/g)Antimony 0.5–50Bismuth 0.1–11Gallium 2.9–54Lead 0.4–21Silver 1–35Tin 2.2–97Thallium 0.5–3.01.3 This method has only been interlaboratory tested for the elements and ranges specified. It may be possible to extend this method to other elements or different composition ranges provided that method validation that includes evaluation of method sensitivity, precision, and bias as described in this document is performed. Additionally, the validation study must evaluate the acceptability of sample preparation methodology using reference materials and/or spike recoveries. The user is cautioned to carefully evaluate the validation data as to the intended purpose of the analytical results. Guide E2857 provides additional guidance on method validation.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 9.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method usually requires several minutes per sample. This test method covers eight elements and thus provides more elemental composition data than Test Method D4628 or Test Methods D4927. In addition, this test method provides more accurate results than Test Method D5185, which is intended for used lubricating oils and base oils.4.2 Additive packages are blends of individual additives, which can act as detergents, antioxidants, antiwear agents, and so forth. Many additives contain one or more elements covered by this test method. Additive package specifications are based, in part, on elemental composition. Lubricating oils are typically blends of additive packages, and their specifications are also determined, in part, by elemental composition. This test method can be used to determine if additive packages and unused lubricating oils meet specifications with respect to elemental composition.4.3 Several additive elements and their compounds are added to the lubricating oils to give beneficial performance (Table 1).1.1 This test method covers the quantitative determination of barium, boron, calcium, copper, magnesium, molybdenum, phosphorus, sulfur, and zinc in unused lubricating oils and additive packages.1.2 The precision statements are valid for dilutions in which the mass % sample in solvent is held constant in the range of 1 % to 5 % by mass of oil.1.3 The precision tables define the concentration ranges covered in the interlaboratory study. However, both lower and higher concentrations can be determined by this test method. The low concentration limits are dependent on the sensitivity of the ICP instrument and the dilution factor. The high concentration limits are determined by the product of the maximum concentration defined by the linear calibration curve and the sample dilution factor.1.4 Sulfur can be determined if the instrument can operate at a wavelength of 180 nm.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These test methods cover, in single procedures, the determination of Ni, V, and Fe in crude oils and residual oils. These test methods complement Test Method D1548, which covers only the determination of vanadium.4.2 When fuels are combusted, vanadium present in the fuel can form corrosive compounds. The value of crude oils can be determined, in part, by the concentrations of nickel, vanadium, and iron. Nickel and vanadium, present at trace levels in petroleum fractions, can deactivate catalysts during processing. These test methods provide a means of determining the concentrations of nickel, vanadium, and iron.1.1 These test methods cover the determination of nickel, vanadium, and iron in crude oils and residual fuels by inductively coupled plasma (ICP) atomic emission spectrometry. Two different test methods are presented.1.2 Test Method A (Sections 7 – 11 and 18 – 22)—ICP is used to analyze a sample dissolved in an organic solvent. This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine or detect insoluble particulates.1.3 Test Method B (Sections 12 – 22)—ICP is used to analyze a sample that is decomposed with acid.1.4 The concentration ranges covered by these test methods are determined by the sensitivity of the instruments, the amount of sample taken for analysis, and the dilution volume. A specific statement is given in 15.2. Typically, the low concentration limits are a few tenths of a milligram per kilogram. Precision data are provided for the concentration ranges specified in Section 21.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Petroleum products may contain elements either in trace concentrations (for example, ng/g (ppb mass)) or in minor to major levels (ppm to mass %). These elements might be characteristic of the crude petroleum or might originate from specific inclusions of additives for beneficial effect in the refined product. Often, such additives have product specifications which control the quality of a product in commerce. Hence, it is important to determine these elements as accurately as possible. Other elements present at trace levels may be harmful to combustion engines causing wear or reduced performance, may cause poisoning of catalysts, or may be of environmental concern as combustion emissions. ICP-MS instrumentation is well-suited for determining these elements and is particularly useful for the determination of the trace level elements that may not be readily achieved by other techniques.5.2 Various elemental analytical techniques such as atomic absorption spectrometry (AAS), for example, Test Method D3605 and D4628; inductively coupled plasma atomic emission spectrometry (ICP-AES), for example, Test Methods D7111, D4951, and D5185; X-ray fluorescence (XRF), for example, Practice D7343, Test Method D7220, Test Methods D4927, and Test Method D6443; or graphite furnace atomic absorption spectrometry (GFAAS), for example, Test Method D6732 are used for this purpose. This test method is the first example where ICP-MS is used for elemental analysis of petroleum products.5.3 This test method covers the rapid determination of seven elements in distillate petroleum products. Test times approximate a few minutes per test specimen, and quantification for most elements is in the low to sub ng/g (ppb mass) range. High analysis sensitivity can be achieved for some elements that are difficult to determine by other techniques.1.1 This test method describes the procedure for the determination of trace elements in light and middle distillate petroleum products using inductively coupled plasma mass spectrometry (ICP-MS).1.2 This test method should be used by analysts experienced in the use of inductively coupled plasma mass spectrometry (ICP-MS) with knowledge of interpretation of spectral, isobaric, polyatomic, and matrix interferences, as well as procedures for their correction or reduction.1.3 The table in 6.1 lists elements for which the test method applies along with recommended isotope. Actual working detection limits are sample dependent and, as the sample matrix varies, these detection limits may also vary.1.4 The concentration range of this test method is typically from low to sub ng/g (ppb mass) to 1000 ng/g (ppb mass), however the precision and bias statement is specified for a smaller concentration range based on test samples analyzed in the ILS, see the table in Section 18. The test method may be used for concentrations outside of this range; however, the precision statements may not be applicable.1.4.1 This test method shall be further developed to extend that table to include additional elements.1.5 This test method uses metallo-organic standards (organometallic or organosoluble metal complex) for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than a few micrometers as these particles may settle out in the sample container and are not effectively transported through the sample introduction system.1.6 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 8.2, 8.7, and Section 9.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice may be used to determine concentrations of elements leached from nuclear waste materials (glasses, ceramics, cements) using an aqueous leachant. If the nuclear waste material is radioactive, a suitably contained and shielded ICP-AES spectrometer system with a filtered exit-gas system must be used, but no other changes in the practice are required. The leachant may be deionized water or any aqueous solution containing less than 1 % total solids.5.2 This practice as written is for the analysis of solutions containing 1 % nitric acid. It can be modified to specify the use of the same or another mineral acid at the same or higher concentration. In such cases, the only change needed in this practice is to substitute the preferred acid and concentration value whenever 1 % nitric acid appears here. It is important that the acid type and content of the reference and check solutions closely match the leachate solutions to be analyzed.5.3 This practice can be used to analyze leachates from static leach testing of waste forms using Test Method C1220.1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES).1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material.1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids.1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction.1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.6 This practice contains notes that are explanatory and are not part of the mandatory requirements of the method.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is useful for the determination of concentrations of metals in many waste streams from various nuclear and non-nuclear manufacturing processes. The test method is useful for characterizing liquid wastes and liquid wastes containing undissolved solids prior to treatment, storage, or stabilization. It has the capability for the simultaneous determination of up to 26 elements.5.2 The applicable concentration ranges of the elements analyzed by this procedure are listed in Table 1.1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities.1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection.1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1.1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The composition of such samples is highly variable, both between waste stream types and within a single waste stream. As a result of this variability, a single acid digestion scheme may not be expected to succeed with all sample matrices. Certain elements may be recovered on a semi-quantitative basis, while most results will be highly quantitative.1.5 This test method should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction.1.6 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.7 This test method contains notes that are explanatory and are not part of the mandatory requirements of the method.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Catalyst fines in fuel oils can cause abnormal engine wear. These test methods provide a means of determining silicon and aluminum, the major constituents of the catalysts.1.1 These test methods cover the determination of aluminum and silicon in fuel oils at concentrations between 5 mg/kg and 150 mg/kg for aluminum and 10 mg/kg and 250 mg/kg for silicon.1.2 Test Method A—Inductively coupled plasma atomic emission spectrometry is used in this test method to quantitatively determine aluminum and silicon.1.3 Test Method B—Flame atomic absorption spectrometry is used in this test method to quantitatively determine aluminum and silicon.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Sections 7.6, 10.1, and 11.5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method covers the rapid determination of 22 elements in used and unused lubricating oils and base oils, and it provides rapid screening of used oils for indications of wear. Test times approximate a few minutes per test specimen, and detectability for most elements is in the low mg/kg range. In addition, this test method covers a wide variety of metals in virgin and re-refined base oils. Twenty-two elements can be determined rapidly, with test times approximating several minutes per test specimen.5.2 When the predominant source of additive elements in used lubricating oils is the additive package, significant differences between the concentrations of the additive elements and their respective specifications can indicate that the incorrect oil is being used. The concentrations of wear metals can be indicative of abnormal wear if there are baseline concentration data for comparison. A marked increase in boron, sodium, or potassium levels can be indicative of contamination as a result of coolant leakage in the equipment. This test method can be used to monitor equipment condition and define when corrective actions are needed.5.2.1 The significance of metal analysis in used lubricating oils is tabulated in Table 4.5.3 The concentrations of metals in re-refined base oils can be indicative of the efficiency of the re-refining process. This test method can be used to determine if the base oil meets specifications with respect to metal content.1.1 This test method covers the determination of additive elements, wear metals, and contaminants in used and unused lubricating oils and base oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1.(A) These wavelengths are only suggested and do not represent all possible choices.1.2 This test method covers the determination of selected elements, listed in Table 1, in re-refined and virgin base oils.1.3 For analysis of any element using wavelengths below 190 nm, a vacuum or inert-gas optical path is required. The determination of sodium and potassium is not possible on some instruments having a limited spectral range.1.4 This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than a few micrometers.21.5 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision.1.6 For elements other than calcium, sulfur, and zinc, the low limits listed in Table 2 and Table 3 were estimated to be ten times the repeatability standard deviation. For calcium, sulfur, and zinc, the low limits represent the lowest concentrations tested in the interlaboratory study.(A) where: X = mean concentration, μg/g.(A) where: X = mean concentration, μg/g.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 6.1, 8.2, and 8.4.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method may be run together with Test Method C1432 to analyze for trace impurities in Pu metal. Using the technique described in this test method and the technique described in Test Method C1432 will provide the analyst with a more thorough verification of the impurity concentrations contained in the Pu metal sample. In addition, Test Method C1432 can be used to determine impurity concentrations for analytes such as Ca, Fe, Na, and Si, which have not been determined using this test method.5.2 This test method can be used on Pu matrices in nitrate solutions.5.3 This test method has been validated for use on materials that meet the specifications described in Specification C757 and Test Methods C758 and C759.5.4 This test method has been validated for all elements listed in Table 1.(A) Without outlying value.1.1 This test method covers the determination of trace elements in plutonium (Pu) materials such as Pu metal, Pu oxides, and Pu/uranium (U) mixed oxides. The Pu sample is dissolved in acid, and the concentration of the trace impurities are determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).1.2 This test method is specific for the determination of trace impurities where the samples are dissolved and the oxidation state is adjusted to the Pu(IV) and, if applicable, the U(VI) state. It may be applied to other matrices; however, it is the responsibility of the user to evaluate the performance of other matrices.1.3 The use of a quadrupole ICP-MS or a high resolution ICP-MS (HR-ICP-MS) can be employed in all applications relevant to this test method. HR-ICP-MS is a better option in many cases since it can reduce or potentially eliminate interferences encountered in the following complex sample matrices.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It has been shown in many industries that separating information regarding small or dissolved elemental materials in the lubricant from suspended particulate is crucial. In many cases only an overall elemental analysis is provided, which may not capture significant wear or even machinery failure events. Such events are often accompanied by a sudden increase in the production of large particulate, which is suspended in and can be detected in the machinery’s lubricant. This test method specifically targets such particulate, which has historically been difficult to quantify. Users of the technique include numerous military organizations, and maintainers of wind turbines, nuclear power facilities, and offshore rigs.1.1 This automatic wear particle analysis2 test method for in-service lubricants describes using a combination of pore blockage particle counting and energy dispersive X-ray fluorescence (EDXRF) spectrometry for the quantitative determination of solid particle counts larger than four (4) micrometres, and elemental content of suspended particulate of iron (Fe) and copper (Cu) in such lubricants.1.2 This test method provides for the determination of the elemental content of suspended particulate of Fe greater than 4 μm in the range of 6 mg/kg to 223 mg/kg. Suspended particulate of copper greater than 4 μm is determined in the range of 3.5 mg/kg to 92.4 mg/kg in the lubricant. Total particle count greater than 4 μm is determined in the range of 11 495 particles/mL greater than 4 μm to 2 169 500 particles/mL greater than 4 μm in the lubricant.1.3 This test method is applicable to all known in-service lubricants (API Groups I-V) at any stage of degradation.1.4 This test method uses an empirical inter-element correction methodology.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Lubricating greases are used in almost all bearings used in any machinery. Lubricating grease is composed of ~90 % additized oil and soap or other thickening agent. There are over a dozen metallic elements present in greases, either blended as additives for performance enhancements or as thickeners, or in used greases present as contaminants and wear metals. Determining their concentrations can be an important aspect of grease manufacture. The metal content can also indicate the amount of thickeners in the grease. Additionally, a reliable analysis technique can also assist in the process of trouble shooting problems with new and used grease in the field.5.2 Although widely used in other sectors of the oil industry for metal analysis, ICP-AES based Test Methods D4951 or D5185 cannot be used for analyzing greases because of their insolubility in organic solvents used in these test methods. Hence, grease samples need to be brought into aqueous solution by acid decomposition before ICP-AES measurements.5.3 Test Method D3340 has been used to determine lithium and sodium content of lubricating greases using flame photometry. This technique is no longer widely used. This new test method provides a test method for multi-element analysis of grease samples. This is the first D02 standard available for simultaneous multi-element analysis of lubricating greases.1.1 This test method covers the determination of a number of metals such as aluminum, antimony, barium, calcium, iron, lithium, magnesium, molybdenum, phosphorus, silicon, sodium, sulfur, and zinc in unused lubricating greases by inductively coupled plasma atomic emission spectrometry (ICP-AES) technique.1.1.1 The range of applicability for this test method, based on the interlaboratory study conducted in 2005,2 is aluminum (10 to 600), antimony (10 to 2300), barium (50 to 800), calcium (20 to 50 000), iron (10 to 360), lithium (300 to 3200), magnesium (30 to 10 000), molybdenum (50 to 22 000), phosphorus (50 to 2000), silicon (10 to 15 000), sodium (30 to 1500), sulfur (1600 to 28 000), and zinc (300 to 2200), all in mg/kg. Lower levels of elements may be determined by using larger sample weights, and higher levels of elements may be determined by using smaller amounts of sample or by using a larger dilution factor after sample dissolution. However, the test precision in such cases has not been determined, and may be different than the ones given in Table 3.1.1.2 It may also be possible to determine additional metals such as bismuth, boron, cadmium, chromium, copper, lead, manganese, potassium, titanium, etc. by this technique. However, not enough data is available to specify the precision for these latter determinations. These metals may originate into greases through contamination or as additive elements.1.1.3 During sample preparation, the grease samples are decomposed with a variety of acid mixture(s). It is beyond the scope of this test method to specify appropriate acid mixtures for all possible combination of metals present in the sample. But if the ash dissolution results in any visible insoluble material, the test method may not be applicable for the type of grease being analyzed, assuming the insoluble material contains some of the analytes of interest.1.2 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional appropriate dilutions of dissolved samples and with no degradation of precision.1.3 The development of the technique behind this test method is documented by Fox.31.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Sections 8 and 10.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The presence of metals in PTA used for the production of polyester is undesirable because they may speed up or slow down the reaction and be impurities in the final product.4.2 Determination of the metals in PTA is often required. This test method is suitable for setting specifications and for use as an internal quality control where these products are produced or used.4.3 This test method covers the determination of sodium, chromium, cobalt, aluminum, titanium, potassium, magnesium, manganese, iron, nickel, molybdenum and calcium.1.1 This test method covers the determination of metal elements in purified terephthalic acid (PTA) by inductively coupled plasma atomic emission spectrometry (ICP-AES).This method is applicable to PTA samples containing sodium, chromium, cobalt, aluminum, titanium, potassium, magnesium, manganese, iron, nickel, molybdenum and calcium over 0.055 mg/kg, respectively.1.2 In determining the conformance of the test results using this method to applicable specification, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The health of workers in many industries is at risk through exposure by inhalation to toxic metals and metalloids. Industrial hygienists and other public health professionals need to determine the effectiveness of measures taken to control workers’ exposures, and this is generally achieved by making workplace air measurements. This test method has been promulgated in order to make available a standard methodology for making valid exposure measurements for a wide range of metals and metalloids that are used in industry. It will be of benefit to agencies concerned with health and safety at work; industrial hygienists and other public health professionals; analytical laboratories; industrial users of metals and metalloids and their workers, and other groups.5.2 This test method specifies a generic method for determination of the mass concentration of metals and metalloids in workplace air using ICP-AES.5.3 The analysis results can be used for the assessment of workplace exposures to metals and metalloids in workplace air.5.4 When sampling and analysis is carried out in accordance with this test method, the overall procedure normally satisfies the performance requirements of ISO 20581.NOTE 2: Refer to Guide E1370 for guidance on the development of appropriate exposure assessment and measurement strategies.1.1 This test method specifies a procedure for collection, sample preparation, and analysis of airborne particulate matter for the content of metals and metalloids using inductively coupled plasma-atomic emission spectrometry (ICP-AES). The method is generally applicable to occupational exposure monitoring.1.2 This test method is applicable to personal sampling of the inhalable or respirable fraction of airborne particles and to area sampling.1.3 This test method should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and matrix interferences, and procedures for their correction.1.4 This test method specifies a number of alternative methods for preparing test solutions from samples of airborne particulate matter. One of the specified sample preparation methods is applicable to the measurement of soluble metal or metalloid compounds. Other specified methods are applicable to the measurement of total metals and metalloids.1.5 It is the user's responsibility to ensure the validity of this test method for sampling materials of untested matrices.1.6 The following is a non-exclusive list of metals and metalloids for which one or more of the sample dissolution methods specified in this document is applicable. However, there is insufficient information available on the effectiveness of dissolution methods for those elements in italics.Aluminum Indium SodiumAntimony Iron StrontiumArsenic Lead TantalumBarium Lithium TelluriumBeryllium Magnesium ThalliumBismuth Manganese TinBoron Molybdenum TitaniumCadmium Nickel TungstenCalcium Phosphorus UraniumCesium Platinum VanadiumChromium Potassium YttriumCobalt Rhodium ZincCopper Selenium ZirconiumHafnium Silver  1.7 This test method is not applicable to the sampling of elemental mercury, or to inorganic compounds of metals and metalloids that are present in the gaseous or vapor state.1.8 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.9 This test method contains notes that are explanatory and are not part of the mandatory requirements of this test method.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 Tin-based solder alloys are commonly used to manufacture electrical and electronic goods. The elements lead, cadmium, mercury, antimony and bismuth are often declarable substances in solder materials. This test method provides a means of determining the listed declarable substances, as well as other minor and trace constituents, in tin-based solder alloys.4.2 Two methods of dissolving tin-based solder alloys are given in this standard. The first method uses open-vessel hydrofluoric and nitric acid room temperature digestions; the second method employs closed-vessel nitric and hydrofluoric acid microwave digestions, both for use only with ICP-AES instruments equipped with a hydrofluoric acid resistant sample introduction system.4.3 The method of preparing calibration solutions uses 1000 mg/kg single element reference material solutions, and uses matching concentrated acids for both the calibration solutions and the sample solutions.4.4 This test method is intended for use by laboratories experienced with the set-up, calibration and analysis of samples using ICP-AES.1.1 This test method covers procedures for the analysis of tin-based solder alloys for minor and trace elements using inductively-coupled plasma atomic emission spectrometry (ICP-AES) instrumentation.1.2 These test procedures were validated for the analytes and mass fractions listed below.Element Validated Mass FractionRange, mg/kg   Lead 115 to 965Cadmium 25 to 60Mercury 5 to 530Antimony 85 to 1330Bismuth 80 to 210Arsenic 95 to 360Silver 4000 to 42100Cobalt 0.5 to 60Iron 15 to 115Chromium 0.5 to 1.5Copper 3000 to 30600Indium 25 to 115Nickel 5 to 150Phosphorus 10 to 110Selenium 1 to 30Zinc 2 to 160Aluminum 1 to 31.3 The procedures appear in the following order:Procedure SectionInternal Standardization 8Calibration Solution Preparations 9Preparation of Sample and Validation Solutions 10Calibration 11Analysis Procedure 121.4 The values stated in SI units are to be regarded as the standard. Any other values are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

DOE Order 5480.11 and ANSI N13.30 require that internal dose assessments be made as part of the bioassay program for nuclear facility workers. For indirect bioassay of uranium workers, the uranium isotopes must be measured along with the total uranium in urine samples. The RMDA for each uranium isotope is 0.1 pCi/L. This method is applicable for measuring 235U and 238U at the RMDA. Because of extremely low mass concentration (because of the high specific activity), 234U cannot be measured without additional sample preconcentration. Note 2—Column chromatography separations and concentration of 234U using manual or flow-injection preconcentration followed by ICP-MS isotopic determination are described in Test Methods C1310 and C1345. These methods focus on environmental soil sample analysis, but with some development, may be applicable to digested urine samples. The 234U concentration can be calculated based on an enrichment gradient for workers in uranium enrichment plants, and internal dose assessments can be made. Note 3—Use of high resolution ICP-MS may also be used to obtain lower detection limits. 1.1 This test method covers the determination of the concentration of uranium-235 and uranium-238 in urine using Inductively Coupled Plasma-Mass Spectrometry. This test method can be used to support uranium facility bioassay programs. 1.2 This method detection limits for 235U and 238U are 6 ng/L. To meet the requirements of ANSI N13.30, the minimum detectable activity (MDA) of each radionuclide measured must be at least 0.1 pCi/L (0.0037 Bq/L). The MDA translates to 47 ng/L for 235U and 300 ng/L for 238U. Uranium– 234 cannot be determined at the MDA with this test method because of its low mass concentration level equivalent to 0.1 pCi/L. 1.3 The digestion and anion separation of urine may not be necessary when uranium concentrations of more than 100 ng/L are present. 1.4 Units—The values stated in picoCurie per liter units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Note 1—Warning: The ICP-MS is a source of intense ultraviolet radiation from the radio frequency induced plasma. Protection from radio frequency radiation and UV radiation is provided by the instrument under normal operation.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
59 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页