微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

4.1 This guide is intended to be used in the selection and installation of chemical grout to seal leaks in concrete walls, floors, and ceilings. The procedure described in this guide focuses on the injection of through-wall cracks, but may be adapted to cold joints, control joints, voids associated with penetrations, and other voids contributing to water intrusion through concrete elements. This guide is intended to assist the building owner, owner’s representative, architect, engineer, contractor, or authorized inspector, or combinations thereof, during the selection, specification, or installation, or combinations thereof, of chemical grout for waterproofing repair.4.2 Prior to attempting any repair, it is important for all parties to have a clear and mutual understanding of the limitations of the repair and the iterative nature of the process. Injection of chemical grout does not affect the source of a leak. The repair obstructs the infiltration of water at a specific location only. The flow of water will be diverted elsewhere, and it is common for water to subsequently appear at a different location that was previously dry. A successful campaign at a given location can significantly reduce the amount of water infiltration, but may not fully prevent leakage. Given the nature of the materials and application technique, and depending on the conditions, the repairs should be periodically monitored and additional repair installations may be required.4.3 This guide is applicable to installations at below-grade walls and slabs. At above-grade elements, temperature variation on a daily or seasonal basis may lead to significant or more frequent changes, or both, in the width of a crack or joint. The use of injected chemical grout may be appropriate for many above-grade applications, but this guide does not specifically address installation of grout in dynamic cracks or joints.4.4 Cracks in below-grade walls may be a sign of structural distress. Prior to the injection of chemical grout, the overall conditions and context of the damage should be assessed to determine if a non-structural repair is appropriate.4.5 This guide does not address repairs intended to provide a seal against air leakage or air infiltration.4.6 Project-specific or environmental conditions such as existing construction, prior waterproofing installations, access, water volume or flow rate, water chemistry, temperature, humidity, and other factors may warrant the evaluation of curtain grouting as an alternative to crack injection.4.7 Practices F2304, F2414, and F2454 describe materials and procedures related to the use of chemical grout to seal components of sewer systems. While the specific procedures differ from those described in this guide, the standards contain general information on chemical grouting materials and methods that may be of interest to those involved with waterproofing repair of building elements.4.8 This guide does not address the use of particulate grouts or epoxy as an injection material.1.1 This guide describes the selection of materials, installation methods, and inspection required for sealing leaks at cracks in concrete building walls and slabs using chemical grout. The process discussed in this guide is a waterproofing repair in which voids in a concrete element are sealed with a reactive solution, installed by pressurized injection through drilled or surface-mounted ports.1.2 This guide does not address the use of chemical grout for waterproofing by curtain grouting or injection into preplaced permeable waterstop tubes. Injection of masonry elements presents additional factors beyond the scope of this guide. This guide does not address the use of injectable materials for structural repairs or for geotechnical applications such as soil stabilization.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 For many structural ceramic components in service, their use is often limited by lifetimes that are controlled by a process of SCG. This test method provides the empirical parameters for appraising the relative SCG susceptibility of ceramic materials under specified environments. Furthermore, this test method may establish the influences of processing variables and composition on SCG as well as on strength behavior of newly developed or existing materials, thus allowing tailoring and optimizing material processing for further modification. In summary, this test method may be used for material development, quality control, characterization, and limited design data generation purposes. The conventional analysis of constant stress rate testing is based on a number of critical assumptions, the most important of which are listed in the next paragraphs.4.2 The flexural stress computation for the rectangular beam test specimens or the equibiaxial disk flexure test specimens is based on simple beam theory, with the assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one-fiftieth of the beam thickness.4.3 The test specimen sizes and fixtures for rectangular beam test specimens should be in accordance with Test Method C1161, which provides a balance between practical configurations and resulting errors, as discussed in Refs (4, 5). Only four-point test configuration is allowed in this test method for rectangular beam specimens. Three-point test configurations are not permitted. The test specimen sizes and fixtures for disk test specimens tested in ring-on-ring flexure should be chosen in accordance with Test Method C1499. The test specimens for direct tension strength testing should be chosen in accordance with Test Method C1273.4.4 The SCG parameters (n and D) are determined by fitting the measured experimental data to a mathematical relationship between strength and applied stress rate, log σf = 1/(n+1) log σ˙ + log D. The basic underlying assumption on the derivation of this relationship is that SCG is governed by an empirical power-law crack velocity, v = A[KI/KIC]n (see Appendix X1).NOTE 3: There are various other forms of crack velocity laws which are usually more complex or less convenient mathematically, or both, but may be physically more realistic (6). It is generally accepted that actual data cannot reliably distinguish between the various formulations. Therefore, the mathematical analysis in this test method does not cover such alternative crack velocity formulations.4.5 The mathematical relationship between strength and stress rate was derived based on the assumption that the slow crack growth parameter is at least n ≥ 5 (1, 7, 8). Therefore, if a material exhibits a very high susceptibility to SCG, that is, n < 5, special care should be taken when interpreting the results.4.6 The mathematical analysis of test results in accordance with the method in 4.4 assumes that the material displays no rising R-curve behavior. It should be noted that the existence of such behavior cannot be determined from this test method.4.7 Slow crack growth behavior of ceramic materials exposed to stress-corrosive gases or liquid environments can vary as a function of mechanical, material, and electrochemical variables. Therefore, it is essential that test results accurately reflect the effects of specific variables under study. Only then can data be compared from one investigation to another on a valid basis or serve as a valid basis for characterizing materials and assessing structural behavior.4.8 The strength of advanced ceramics is probabilistic in nature. Therefore, SCG that is determined from the strengths of a ceramic material is also a probabilistic phenomenon. Hence, a proper range and number of applied stress rates in conjunction with an appropriate number of specimens at each applied stress rate are required for statistical reproducibility and design (2). Guidelines are provided in this test method.NOTE 4: For a given ceramic material/environment system, the SCG parameter n is constant regardless of specimen size although its reproducibility is dependent on the variables mentioned in 4.8. By contrast, the SCG parameter D depends significantly on strength and thus on specimen size (see Eq X1.6 in Appendix X1).4.9 The strength of a ceramic material for a given specimen and test fixture configuration is dependent on its inherent resistance to fracture, the presence of flaws, and environmental effects. Analysis of a fracture surface, fractography, though beyond the scope of this test method, is highly recommended for all purposes, especially to verify the mechanism(s) associated with failure (refer to Practice C1322).4.10 The conventional analysis of constant stress rate testing is based on a critical assumption that stress is uniform throughout the test piece. This is most easily achieved in direct tension test specimens. Only test specimens that fracture in the inner gauge section in four-point testing should be used. Three-point flexure shall not be used. Breakages between the outer and inner fixture contact points should be discounted. The same requirement applies to biaxial disk strength testing. Only fractures which occur in the inner loading circle should be used. Furthermore, it is assumed that the fracture origins are near to the tensile surface and do not grow very large relative to the thickness of rectangular beam flexure or disk strength test specimens.4.11 The conventional analysis of constant stress rate testing is also based on a critical assumption that the same type flaw controls strength in all specimens at all loading rates. If the flaw distribution is multimodal, then the conventional analysis in this standard may produce erroneous slow crack growth parameter estimates.1.1 This test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress rate rectangular beam flexural testing, ring-on-ring biaxial disk flexural testing, or direct tensile strength, in which strength is determined as a function of applied stress rate in a given environment at ambient temperature. The strength degradation exhibited with decreasing applied stress rate in a specified environment is the basis of this test method which enables the evaluation of slow crack growth parameters of a material.NOTE 1: This test method is frequently referred to as “dynamic fatigue” testing (1-3)2 in which the term “fatigue” is used interchangeably with the term “slow crack growth.” To avoid possible confusion with the “fatigue” phenomenon of a material which occurs exclusively under cyclic loading, as defined in Terminology E1823, this test method uses the term “constant stress rate testing” rather than “dynamic fatigue” testing.NOTE 2: In glass and ceramics technology, static tests of considerable duration are called “static fatigue” tests, a type of test designated as stress rupture (See Terminology E1823).1.2 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The test gives an estimate of the ability of a rubber vulcanizate to resist crack growth of a pierced specimen when subjected to bending or flexing.4.2 No exact correlation between these test results and service is implied due to the varied nature of service conditions.1.1 This test method covers the determination of crack growth of vulcanized rubber when subjected to repeated bending strain or flexing. It is particularly applicable to tests of synthetic rubber compounds which resist the initiation of cracking due to flexing when tested by Method B of Test Methods D430. Cracking initiated in these materials by small cuts or tears in service, may rapidly increase in size and progress to complete failure even though the material is extremely resistant to the original flexing-fatigue cracking. Because of this characteristic of synthetic compounds, particularly those of the SBR type, this test method in which the specimens are first artificially punctured in the flex area should be used in evaluating the fatigue-cracking properties of this class of material.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The surface-crack tension (SCT) test is used to estimate the load-carrying capacity of simple sheet- or plate-like structural components having a type of flaw likely to occur in service. The test is also used for research purposes to investigate failure mechanisms of cracks under service conditions.4.2 The residual strength of an SCT specimen is a function of the crack depth and length and the specimen thickness as well as the characteristics of the material. This relationship is extremely complex and cannot be completely described or characterized at present.4.2.1 The results of the SCT test are suitable for direct application to design only when the service conditions exactly parallel the test conditions. Some methods for further analysis are suggested in Appendix X1.4.3 In order that SCT test data can be comparable and reproducible and can be correlated among laboratories, it is essential that uniform SCT testing practices be established.4.4 The specimen configuration, preparation, and instrumentation described in this practice are generally suitable for cyclic- or sustained-force testing as well. However, certain constraints are peculiar to each of these tests. These are beyond the scope of this practice but are discussed in Ref. (1).1.1 This practice covers the design, preparation, and testing of surface-crack tension (SCT) specimens. It relates specifically to testing under continuously increasing force and excludes cyclic and sustained loadings. The quantity determined is the residual strength of a specimen having a semielliptical or circular-segment fatigue crack in one surface. This value depends on the crack dimensions and the specimen thickness as well as the characteristics of the material.1.2 Metallic materials that can be tested are not limited by strength, thickness, or toughness. However, tests of thick specimens of tough materials may require a tension test machine of extremely high capacity. The applicability of this practice to nonmetallic materials has not been determined.1.3 This practice is limited to specimens having a uniform rectangular cross section in the test section. The test section width and length must be large with respect to the crack length. Crack depth and length should be chosen to suit the ultimate purpose of the test.1.4 Residual strength may depend strongly upon temperature within a certain range depending upon the characteristics of the material. This practice is suitable for tests at any appropriate temperature.1.5 Residual strength is believed to be relatively insensitive to loading rate within the range normally used in conventional tension tests. When very low or very high rates of loading are expected in service, the effect of loading rate should be investigated using special procedures that are beyond the scope of this practice.NOTE 1: Further information on background and need for this type of test is given in the report of ASTM Task Group E24.01.05 on Part-Through-Crack Testing (1).21.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 Creep crack growth rate expressed as a function of the steady state C* or K characterizes the resistance of a material to crack growth under conditions of extensive creep deformation or under brittle creep conditions. Background information on the rationale for employing the fracture mechanics approach in the analyses of creep crack growth data is given in (11, 13, 30-35). 6.2 Aggressive environments at high temperatures can significantly affect the creep crack growth behavior. Attention must be given to the proper selection and control of temperature and environment in research studies and in generation of design data. 6.2.1 Expressing CCI time, t0.2 and CCG rate, da/dt as a function of an appropriate fracture mechanics related parameter generally provides results that are independent of specimen size and planar geometry for the same stress state at the crack tip for the range of geometries and sizes presented in this document (see Annex A1). Thus, the appropriate correlation will enable exchange and comparison of data obtained from a variety of specimen configurations and loading conditions. Moreover, this feature enables creep crack growth data to be utilized in the design and evaluation of engineering structures operated at elevated temperatures where creep deformation is a concern. The concept of similitude is assumed, implying that cracks of differing sizes subjected to the same nominal C*(t), Ct, or K will advance by equal increments of crack extension per unit time, provided the conditions for the validity for the specific crack growth rate relating parameter are met. See 11.7 for details. 6.2.2 The effects of crack tip constraint arising from variations in specimen size, geometry and material ductility can influence t0.2 and da/dt. For example, crack growth rates at the same value of C*(t), Ct in creep-ductile materials generally increases with increasing thickness. It is therefore necessary to keep the component dimensions in mind when selecting specimen thickness, geometry and size for laboratory testing. 6.2.3 Different geometries as mentioned in 1.1.6 may have different size requirements for obtaining geometry and size independent creep crack growth rate data. It is therefore necessary to account for these factors when comparing da/dt data for different geometries or when predicting component life using laboratory data. For these reasons, the scope of this standard is restricted to the use of specimens shown in Annex A1 and the validation criteria for these specimens are specified in 11.7. However if specimens other than the C(T) geometry are used for generating creep crack growth data, then the da/dt data obtained should, if possible, be compared against test data derived from the standard C(T) tests in order to validate the data. 6.2.4 Creep cracks have been observed to grow at different rates at the beginning of tests compared with the rates at equivalent C*(t), Ct or K values for cracks that have sustained previous creep crack extension (12, 13). This region is identified as ‘tail’. The duration of this transient condition, ‘tail’, varies with material and initially applied force level. These transients are due to rapid changes in the crack tip stress fields after initial elastic loading and/or due to an initial period during which a creep damage zone evolves at the crack tip and propagates in a self-similar fashion with further crack extension (12, 13). This region is separated from the steady-state crack extension which follows this period and is characterized by a unique da/dt versus C*(t), Ct or K relationship. This transient region, especially in creep-brittle materials, can be present for a substantial fraction of the overall life (35). Criteria are provided in this standard to quantify this region as an initial crack growth period (see 1.1.5) and to use it in parallel with the steady state crack growth rate data. See 11.8.8 for further details. 6.3 Results from this test method can be used as follows: 6.3.1 Establish predictive models for crack incubation periods and growth using analytical and numerical techniques (18-21). 6.3.2 Establish the influence of creep crack development and growth on remaining component life under conditions of sustained loading at elevated temperatures wherein creeps deformation might occur (23-28). Note 1: For such cases, the experimental data must be generated under representative loading and stress-state conditions and combined with appropriate fracture or plastic collapse criterion, defect characterization data, and stress analysis information. 6.3.3 Establish material selection criteria and inspection requirements for damage tolerant applications. 6.3.4 Establish, in quantitative terms, the individual and combined effects of metallurgical, fabrication, operating temperature, and loading variables on creep crack growth life. 6.4 The results obtained from this test method are designed for crack dominant regimes of creep failure and should not be applied to cracks in structures with wide-spread creep damage which effectively reduces the crack extension to a collective damage region. Localized damage in a small zone around the crack tip is permissible, but not in a zone that is comparable in size to the crack size or the remaining ligament size. Creep damage for the purposes here is defined by the presence of grain boundary cavitation. Creep crack growth is defined primarily by the growth of intergranular time-dependent cracks. Crack tip branching and deviation of the crack growth directions can occur if the wrong choice of specimen size, side-grooving and geometry is made (see 8.3). The criteria for geometry selection are discussed in 5.8. 1.1 This test method covers the determination of creep crack initiation (CCI) and creep crack growth (CCG) in metals at elevated temperatures using pre-cracked specimens subjected to static or quasi-static loading conditions. The solutions presented in this test method are validated for base material (that is, homogenous properties) and mixed base/weld material with inhomogeneous microstructures and creep properties. The CCI time, t0.2, which is the time required to reach an initial crack extension of δai = 0.2 mm to occur from the onset of first applied force, and CCG rate, a˙ or da/dt are expressed in terms of the magnitude of creep crack growth correlated by fracture mechanics parameters, C* or K, with C* defined as the steady state determination of the crack tip stresses derived in principal from C*(t) and Ct (1-17).2 The crack growth derived in this manner is identified as a material property which can be used in modeling and life assessment methods (17-28). 1.1.1 The choice of the crack growth correlating parameter C*, C*(t), Ct, or K depends on the material creep properties, geometry and size of the specimen. Two types of material behavior are generally observed during creep crack growth tests; creep-ductile (1-17) and creep-brittle (29-44). In creep ductile materials, where creep strains dominate and creep crack growth is accompanied by substantial time-dependent creep strains at the crack tip, the crack growth rate is correlated by the steady state definitions of Ct or C*(t) , defined as C* (see 1.1.4). In creep-brittle materials, creep crack growth occurs at low creep ductility. Consequently, the time-dependent creep strains are comparable to or dominated by accompanying elastic strains local to the crack tip. Under such steady state creep-brittle conditions, Ct or K could be chosen as the correlating parameter (8-14). 1.1.2 In any one test, two regions of crack growth behavior may be present (12, 13). The initial transient region where elastic strains dominate and creep damage develops and in the steady state region where crack grows proportionally to time. Steady-state creep crack growth rate behavior is covered by this standard. In addition, specific recommendations are made in 11.7 as to how the transient region should be treated in terms of an initial crack growth period. During steady state, a unique correlation exists between da/dt and the appropriate crack growth rate relating parameter. 1.1.3 In creep ductile materials, extensive creep occurs when the entire un-cracked ligament undergoes creep deformation. Such conditions are distinct from the conditions of small-scale creep and transition creep (1-10). In the case of extensive creep, the region dominated by creep deformation is significant in size in comparison to both the crack length and the uncracked ligament sizes. In small-scale-creep only a small region of the un-cracked ligament local to the crack tip experiences creep deformation. 1.1.4 The creep crack growth rate in the extensive creep region is correlated by the C*(t)-integral. The Ct parameter correlates the creep crack growth rate in the small-scale creep and the transition creep regions and reduces, by definition, to C*(t) in the extensive creep region (5). Hence in this document the definition C* is used as the relevant parameter in the steady state extensive creep regime whereas C*(t) and/or Ct are the parameters which describe the instantaneous stress state from the small scale creep, transient and the steady state regimes in creep. The recommended functions to derive C* for the different geometries shown in Annex A1 is described in Annex A2. 1.1.5 An engineering definition of an initial crack extension size δai is used in order to quantify the initial period of crack development. This distance is given as 0.2 mm. It has been shown (41-44) that this initial period which exists at the start of the test could be a substantial period of the test time. During this early period the crack tip undergoes damage development as well as redistribution of stresses prior reaching steady state. Recommendation is made to correlate this initial crack growth period defined as t0.2 at δai = 0.2 mm with the steady state C* when the crack tip is under extensive creep and with K for creep brittle conditions. The values for C* and K should be calculated at the final specified crack size defined as ao + δai where ao is initial size of the starter crack. 1.1.6 The recommended specimens for CCI and CCG testing is the standard compact tension specimen C(T) (see Fig. A1.1) which is pin-loaded in tension under constant loading conditions. The clevis setup is shown in Fig. A1.2 (see 7.2.1 for details). Additional geometries which are valid for testing in this procedure are shown in Fig. A1.3. These are the C-ring in tension CS(T), middle crack specimen in tension M(T), single edge notched tension SEN(T), single edge notched bend SEN(B), and double edge notched tension DEN(T). In Fig. A1.3, the specimens’ side-grooving-position for measuring displacement at the force-line displacement (FLD) and crack mouth opening displacement (CMOD) and positions for the electric potential drop (EPD) input and output leads are shown. Recommended loading for the tension specimens is pin-loading. The configurations, size range are given in Table A1.1 of Annex A1, (43-47). Specimen selection will be discussed in 5.9. 1.1.7 The state-of-stress at the crack tip may have an influence on the creep crack growth behavior and can cause crack-front tunneling in plane-sided specimens. Specimen size, geometry, crack length, test duration and creep properties will affect the state-of-stress at the crack tip and are important factors in determining crack growth rate. A recommended size range of test specimens and their side-grooving are given in Table A1.1 in Annex A1. It has been shown that for this range the cracking rates do not vary for a range of materials and loading conditions (43-47). Suggesting that the level of constraint, for the relatively short term test durations (less than one year), does not vary within the range of normal data scatter observed in tests of these geometries. However, it is recommended that, within the limitations imposed on the laboratory, that tests are performed on different geometries, specimen size, dimensions and crack size starters. In all cases a comparison of the data from the above should be made by testing the standard C(T) specimen where possible. It is clear that increased confidence in the materials crack growth data can be produced by testing a wider range of specimen types and conditions as described above. 1.1.8 Material inhomogeneity, residual stresses and material degradation at temperature, specimen geometry and low-force long duration tests (mainly greater that one year) can influence the rate of crack initiation and growth properties (42-50). In cases where residual stresses exist, the effect can be significant when test specimens are taken from material that characteristically embodies residual stress fields or the damaged material, or both. For example, weldments, or thick cast, forged, extruded, components, plastically bent components and complex component shapes, or a combination thereof, where full stress relief is impractical. Specimens taken from such component that contain residual stresses may likewise contain residual stresses which may have altered in their extent and distribution due to specimen fabrication. Extraction of specimens in itself partially relieves and redistributes the residual stress pattern; however, the remaining magnitude could still cause significant effects in the ensuing test unless post-weld heat treatment (PWHT) is performed. Otherwise residual stresses are superimposed on applied stress and results in crack-tip stress intensity that is different from that based solely on externally applied forces or displacements. Not taking the tensile residual stress effect into account will produce C* values lower than expected effectively producing a faster cracking rate with respect to a constant C*. This would produce conservative estimates for life assessment and non-conservative calculations for design purposes. It should also be noted that distortion during specimen machining can also indicate the presence of residual stresses. 1.1.9 Stress relaxation of the residual stresses due to creep and crack extension should also be taken into consideration. No specific allowance is included in this standard for dealing with these variations. However the method of calculating C* presented in this document which used the specimen’s creep displacement rate to estimate C* inherently takes into account the effects described above as reflected by the instantaneous creep strains that have been measured. However extra caution should still be observed with the analysis of these types of tests as the correlating parameters K and C* shown in Annex A2 even though it is expected that stress relaxation at high temperatures could in part negate the effects due to residual stresses. Annex A4 presents the correct calculations needed to derive J and C* for weldment tests where a mismatch factor needs to be taken into account. 1.1.10 Specimen configurations and sizes other than those listed in Table A1.1 which are tested under constant force will involve further validity requirements. This is done by comparing data from recommended test configurations. Nevertheless, use of other geometries are applicable by this method provided data are compared to data obtained from standard specimens (as identified in Table A1.1) and the appropriate correlating parameters have been validated. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 This test method is a way to evaluate the effects of contaminant particles found in HDPE products containing PCR-HDPE, primarily corrugated pipe. Particles of significant number, size and shape can reduce the slow crack growth resistance of the products. This test is performed in water without a controlled defect such as a notch. Since there is no notch, it is not necessary to use a surfactant in the water bath. It is a constant load test.4.2 This test may be used to evaluate various blends of recycled and virgin materials. For example, a material with high stress crack resistance and few contaminants can be blended with materials that are less resistant to cracking to enhance the overall stress crack resistance of the blend.4.3 The test can be conducted at various temperature and stress conditions. If at least three (3) different temperature/stress conditions are evaluated, an estimate of the service lifetime of the material can be predicted with the use of bi-directional shifting or the rate process method.4.4 The test can also be performed under a single applied load and a single temperature to create a single point test useful for comparative purposes as well as for quality control.1.1 This test method covers an un-notched constant ligament stress (UCLS) test for use with HDPE materials that contain post-consumer recycled HDPE (PCR-HDPE). Contaminants in the PCR-HDPE can initiate stress cracks at elevated temperatures, and this test method evaluates the response of these materials to a constant applied stress.1.2 The test method is focused on HDPE corrugated pipe containing PCR-HDPE, but can be used in other applications where PCR-HDPE is used.1.3 The test utilizes the same devices used to perform the NCTL test (Test Method D5397) and the NCLS test (Test Method F2136), but the test is conducted with different specimens and with the use of water instead of a surfactant solution. The test specimen is larger than standard NCLS and NCTL specimens to increase the number of contaminant particles in the specimen that might grow cracks.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Paper machine rolls can range in size from 2.4 to 9 m [8 to 30 ft] long, with a shell thickness of from 12.5 to 75 mm [0.5 to 3 in.,] and 300 to 1200 mm [12 to 48 in.] diameter. Depending on purpose, paper machine rolls can weigh as little as 60 000 kg [13 000 lb] to as much as 27 500 kg [60 000 lb].5.2 If indications are found during this procedure it can be repeated, with additional sensors to refine source location accuracy.5.3 Removal of rolls for traditional NDT examination may be impractical and may not be sensitive enough to locate small defects.5.4 Traditional AE examination, whereby the roll is subjected to load greater than service load to detect crack extension, risks damage to the roll and is best employed as a follow-up NDT examination.5.5 Manual rotation through a full revolution subjects existing cracks to tensile and compressive forces which can open and close existing cracks, and cause friction at the crack surfaces.5.6 Excess background noise (overhead cranes, nearby maintenance activities) may distort AE data or render it useless. Users must be aware of the following common sources of background noise: bearing noise (lack of lubrication, spalling, and so forth), mechanical contact with the roll by other objects, electromagnetic interference (EMI) and radio frequency interference (RFI) from nearby broadcasting facilities and from other sources. This practice should not be used if background noise cannot be eliminated or controlled.5.7 Other Non-destructive test methods may be used to evaluate the significance of AE indications. Traditional AE has been used to confirm the existence of the AE indication and fine tune the location. Magnetic particle, ultrasonic and radiographic examinations have been used to establish the position, depth and dimensions of the indication. Procedures for using other NDT methods are beyond the scope of this practice.1.1 This practice provides guidelines for acoustic emission (AE) examinations of non-pressure, paper machine rolls.1.2 This practice utilizes a slow rotation of the roll to produce a full load cycle where load is provided by the weight of the roll suspended from its bearings or other journal support mechanism(s).1.3 This practice is used for detection of cracks and other discontinuities in rolls that produce frictional acoustic emission during rotation.1.4 The AE measurements are used to detect or locate emission sources, or both. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1.NOTE 1: Traditional AE examination, magnetic particle examination, shear wave ultrasonic examination, and radiography are commonly used to establish the exact position and dimensions of flaws that produce AE.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 When properly used, these procedures serve to isolate such factors as material, blow-molding conditions, post-treatment, and so forth, on the stress-crack resistance of the container.5.2 Environmental stress cracking of blow-molded containers is governed by many factors. Since variance of any of these factors can change the environmental stress-crack resistance of the container, the test results are representative only of a given test performed under defined conditions in the laboratory. The reproducibility of results between laboratories on containers made on more than one machine from more than one mold has not been established.5.3 Results can be used for estimating the shelf life of blow-molded containers in terms of their resistance to environmental stress cracking provided this is done against a rigorous background of practical field experience and reproducible test data.1.1 Under certain conditions of stress, and in the presence of environments such as soaps, wetting agents, oils, or detergents, blow-molded polyethylene containers exhibit mechanical failure by cracking at stresses appreciably below those that would cause cracking in the absence of these environments.1.2 This test method measures the environmental stress crack resistance of blow-molded containers, which is the summation of the influence of container design, resin, blow-molding conditions, post treatment, or other factors that can affect this property. Three procedures are provided as follows:1.2.1 Procedure A, Stress-Crack Resistance of Containers to Potential Stress-cracking Liquids—This procedure is particularly useful for determining the effect of container design on stress-crack resistance or the stress-crack resistance of a proposed container that contains a liquid product.1.2.2 Procedure B, Stress-Crack Resistance of a Specific Container to Polyoxyethylated Nonylphenol (CAS 68412-54-4), a Stress-Cracking Agent—The conditions of test described in this procedure are designed for testing containers made from Class 3 polyethylene Specification D4976. Therefore, this procedure is recommended for containers made from Class 3 polyethylene only. This procedure is particularly useful for determining the effect of resin on the stress-crack resistance of the container.1.2.3 Procedure C, Controlled Elevated Pressure Stress-Crack Resistance of a Specific Container to Polyoxyethylated Nonylphenol (CAS 68412-54-4), a Stress-Cracking Agent—The internal pressure is controlled at a constant elevated level.NOTE 1: There are environmental concerns regarding the disposal of Polyoxyethylated Nonylphenol (Nonylphenoxy poly(ethyleneoxy) ethanol (CAS 68412-54-4), for example, Igepal CO-630). Users are advised to consult their supplier or local environmental office and follow the guidelines provided for the proper disposal of this chemical.1.3 These procedures are not designed to test the propensity for environmental stress cracking in the neck of containers, such as when the neck is subjected to a controlled strain by inserting a plug.1.4 The values stated in SI units are to be regarded as standard.NOTE 2: There is no known ISO equivalent to this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8 and Note 1.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the crack strength [sigma]c of a Charpy-type specimen (see Fig. 1) containing a fatigue crack tested in slow bending. The nominal cross-sectional dimensions of this specimen are identical to those given in Test Methods E23 (Fig. 4A) for the standard Charpy test specimen. The crack strength will be sensitive to changes in the plane-strain fracture toughness providing the strength of the specimen is determined primarily by crack propagation and not by plastic instability.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 For many structural ceramic components in service, their use is often limited by lifetimes that are controlled by a process of slow crack growth. This test method provides the empirical parameters for appraising the relative slow crack growth susceptibility of ceramic materials under specified environments at elevated temperatures. This test method is similar to Test Method C1368 with the exception that provisions for testing at elevated temperatures are given. Furthermore, this test method may establish the influences of processing variables and composition on slow crack growth as well as on strength behavior of newly developed or existing materials, thus allowing tailoring and optimizing material processing for further modification. In summary, this test method may be used for material development, quality control, characterization, and limited design data generation purposes.NOTE 3: Data generated by this test method do not necessarily correspond to crack velocities that may be encountered in service conditions. The use of data generated by this test method for design purposes may entail considerable extrapolation and loss of accuracy.4.2 In this test method, the flexural stress computation is based on simple beam theory, with the assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one fiftieth (1/50) of the beam thickness.4.3 In this test method, the test specimen sizes and test fixtures were chosen in accordance with Test Method C1211, which provides a balance between practical configurations and resulting errors, as discussed in Refs (5, 6). Only the four-point test configuration is used in this test method.4.4 In this test method, the slow crack growth parameters (n and D) are determined based on the mathematical relationship between flexural strength and applied stress rate, log σf = [1/(n + 1)] log σ˙ + log D, together with the measured experimental data. The basic underlying assumption on the derivation of this relationship is that slow crack growth is governed by an empirical power-law crack velocity, v = A[KI /KIC]n (see Appendix X1).NOTE 4: There are various other forms of crack velocity laws which are usually more complex or less convenient mathematically, or both, but may be physically more realistic (7). The mathematical analysis in this test method does not cover such alternative crack velocity formulations.4.5 In this test method, the mathematical relationship between flexural strength and stress rate was derived based on the assumption that the slow crack growth parameter is at least n ≥ 5 (1, 8). Therefore, if a material exhibits a very high susceptibility to slow crack growth, that is, n < 5, special care should be taken when interpreting the results.4.6 The mathematical analysis of test results according to the method in 4.4 assumes that the material displays no rising R-curve behavior, that is, no increasing fracture resistance (or crack-extension resistance) with increasing crack length. It should be noted that the existence of such behavior cannot be determined from this test method. The analysis further assumes that the same flaw types control strength over the entire test range. That is, no new flaws are created, and the flaws that control the strength at the highest stress rate control the strength at the lowest stress rate.4.7 Slow crack growth behavior of ceramic materials can vary as a function of mechanical, material, thermal, and environmental variables. Therefore, it is essential that test results accurately reflect the effects of specific variables under study. Only then can data be compared from one investigation to another on a valid basis, or serve as a valid basis for characterizing materials and assessing structural behavior.4.8 The strength of advanced ceramics is probabilistic in nature. Therefore, slow crack growth that is determined from the flexural strengths of a ceramic material is also a probabilistic phenomenon. Hence, a proper range and number of test rates in conjunction with an appropriate number of specimens at each test rate are required for statistical reproducibility and design (2). Guidance is provided in this test method.NOTE 5: For a given ceramic material/environment system, the SCG parameter n is independent of specimen size, although its reproducibility is dependent on the variables previously mentioned. By contrast, the SCG parameter D depends significantly on strength, and thus on specimen size (see Eq X1.7).4.9 The elevated-temperature strength of a ceramic material for a given test specimen and test fixture configuration is dependent on its inherent resistance to fracture, the presence of flaws, test rate, and environmental effects. Analysis of a fracture surface, fractography, though beyond the scope of this test method, is highly recommended for all purposes, especially to verify the mechanism(s) associated with failure (refer to Practice C1322).1.1 This test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress-rate flexural testing in which flexural strength is determined as a function of applied stress rate in a given environment at elevated temperatures. The strength degradation exhibited with decreasing applied stress rate in a specified environment is the basis of this test method which enables the evaluation of slow crack growth parameters of a material.NOTE 1: This test method is frequently referred to as “dynamic fatigue” testing (1-3)2 in which the term “fatigue” is used interchangeably with the term “slow crack growth.” To avoid possible confusion with the “fatigue” phenomenon of a material which occurs exclusively under cyclic loading, as defined in Terminology E1823, this test method uses the term “constant stress-rate testing” rather than “dynamic fatigue” testing.NOTE 2: In glass and ceramics technology, static tests of considerable duration are called “static fatigue” tests, a type of test designated as stress-rupture (Terminology E1823).1.2 This test method is intended primarily to be used for negligible creep of test specimens, with specific limits on creep imposed in this test method.1.3 This test method applies primarily to advanced ceramics that are macroscopically homogeneous and isotropic. This test method may also be applied to certain whisker- or particle-reinforced ceramics that exhibit macroscopically homogeneous behavior.1.4 This test method is intended for use with various test environments such as air, vacuum, inert, and any other gaseous environments.1.5 Values expressed in this standard test are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is useful to measure the slow crack growth resistance of molded plaques of polyethylene materials at accelerated conditions such as 80 °C, 2.4 MPa stress, and with a sharp notch.5.2 The testing time or time to failure depends on the following test parameters: temperature; stress; notch depth; and specimen geometry. Increasing temperature, stress, and notch depth decrease the time to failure. Material parameters, not controlled by the laboratory, that could impact the test results (time to failure) are: pigment (color or carbon black) and the carrier resin for the pigment, or both. Thus, in reporting the test time or time to failure, all the conditions of the test shall be specified.NOTE 4: Time to failure can also be affected by the degree of pigment (color or carbon black) dispersion and distribution within the test specimen. Test Method D5596 and ISO 18553 provide methods for assessing the degree of dispersion and distribution of the pigment1.1 This test method determines the resistance of polyethylene materials to slow crack growth under conditions specified within.NOTE 1: This test method is known as PENT (Pennsylvania Notch Test) test.1.2 The standard test is performed at 80 °C and at 2.4 MPa, but it shall be acceptable to conduct tests at a temperature below 80 °C and with other stresses low enough to preclude ductile failure and thereby eventually induce brittle type of failure. The standard test is conducted in an air environment; however, it shall be acceptable to immerse test specimens in an alternate environment such as water or a water/detergent solution, or other liquid or a different environment such as an inert gas to evaluate slow crack growth performance in different environments. Generally, polyethylenes will ultimately fail in a brittle manner by slow crack growth at 80 °C if the stress is at or below 2.4 MPaNOTE 2: When testing in environments other than air, it is recommended to consider maintaining the efficacy of the test media (for example, a detergent solution) to minimize any effect of aging.1.3 The test method is for specimens cut from compression molded plaques.2 See Appendix X1 for information relating to specimens from pipe.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method determines the resistance to slow crack growth of polyethylene pipe expressed in terms of time to failure of the pipe with machined axial notches in a hydrostatic stress rupture test.1.2 The values stated in inch-pound units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1--A similiar test method is described in ISO 13479.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
38 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页