微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 208元 / 折扣价: 177 加购物车

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at 90°C (194°F) of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 This test method covers the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 This test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 This test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 This test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 This test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at ca. 22°C of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 The test described is a method for the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 The test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 The test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 The test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 The test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in metric (SI) units are to be regarded as the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Fenestration products, when exposed to differential temperatures (constant higher or lower temperatures on the exterior and room temperature on the interior), or temperature cycling (relatively constant room temperature on the interior and repeated cycling of higher and lower temperatures on the exterior), will have stresses induced on components that may cause failure or changes in overall system performance. Some of these changes may be temporary, with their effects on system performance lasting only during the cyclical temperature exposure. Other changes may be more permanent because of the failure of critical components or irreversible changes in those critical components that control overall system performance.5.2 In this practice, a procedure is provided for evaluating the effects of exposure to temperature cycling at standardized conditions on fenestration products. It is useful for product evaluation and development. Interrelationships between window components can be studied under laboratory conditions simulating in-service temperature extremes.5.3 Laboratory approximation of in-service temperature cycling and temperature extremes is a useful tool for the fenestration designer. These conditions help in evaluating designs and components for absolute and relative interactions on overall performance when these products are installed and functioning in residential and commercial buildings.5.4 This practice is limited to temperature exposure and temperature cycling only. Temperature is only one of many environmental factors that affect field performance of fenestration products. Products made with different materials or construction methods may show specific sensitivity to different environmental factors, such as humidity, ultraviolet radiation, or airborne chemicals.5.5 Because of the complexity and cost of a single apparatus capable of measuring window performance, providing temperature cycling, and providing infrared radiation exposure, more than one test apparatus may be required to complete this practice. If multiple test apparatus are used, care shall be taken when moving the specimen from one apparatus to another to protect them from damage by racking, twisting, dropping, or other causes of distortion.5.6 In this practice, specimens are subjected to one of a variety of possible variations of ambient air temperature or surface temperature cycling conditions by using either convective hot air or exposure to infrared radiation. Therefore, the results are valid only for the test method and conditions used.5.7 At present, no correlation data exists that relates this practice to field performance.1.1 This practice covers the testing of any fenestration products that are installed with the exterior surface exposed to weathering conditions. It is intended to measure the response of the fenestration product to temperature cycles with the temperature changes being induced by controlling the air temperature on the exterior (weather side) or by exposing the product to infrared radiation, or both. When tested using this practice, fenestration products are exposed to standard cycles of elevated and depressed ambient air and surface temperatures. Test methods are specified for evaluating changes in performance that may occur as a result of temperature cycling. With this practice, seasonal and diurnal temperature conditions are simulated in a controlled laboratory apparatus.1.2 In this practice, two test methods, Test Method A and Test Method B, are described for exposing the exterior surface of fenestration products to the elevated portion of a standardized temperature cycle. The purpose for providing two test methods of exposure is to address two distinct needs of the fenestration industry.1.2.1 Test Method A uses infrared radiation to increase the surface temperature of the fenestration product and uses a black panel temperature sensor placed in front of the specimen's exterior surface to sense the temperature. The surface temperature of the black panel temperature sensor is raised to a preset level above the exterior ambient air temperature. This provides a more realistic test for temperature exposure based on atmospheric solar radiation and its effect on the temperature increase of exterior building materials. This method should be used when the number of cycles can be large and the outcome is critical for field correlation. Test Method A is intended for comparative product evaluations.1.2.2 Test Method B uses elevated temperature produced by convective hot air to achieve the exterior air temperature set-point. It provides a more severe test because it elevates the exterior air temperature to levels that are not obtainable under in-service conditions. This provides a more rapid degradation cycle for accelerating the effects of the temperature exposure cycling on some materials and fastening methods used in fenestration products. This method is intended to be used when the number of temperature cycles must be minimized or the outcome is not critical for field correlation. Test Method B is intended for research and development purposes and not for comparative product evaluations.1.3 In this practice, three temperature exposure levels are suggested for each method: Level 1 is a low temperature exposure, Level 2 is a moderate temperature exposure, and Level 3 is a high temperature exposure. The purpose of providing three levels of temperature exposure is to accommodate different grades of fenestration products based on their designs and their potential geographic installation locations. Other temperature levels may be selected by the specifier.1.3.1 Performance characteristic measurements are used to evaluate the effects on the fenestration product caused by temperature cycling. They are measured by the following tests:1.3.1.1 Air leakage rates shall be measured in accordance with Test Method E283/E283M.1.3.1.2 Water penetration resistance shall be measured in accordance with Test Method E331 or Test Method E547.1.3.1.3 Structural strength shall be measured in accordance with Test Method E330/E330M. This test shall only be performed when specified and only after temperature cycling is completed.1.3.2 The test specifier may also choose additional tests to characterize fenestration product performance. (See Note 4 for suggested additional tests.)1.3.3 For the purposes of product comparison, these tests are performed at or near standard laboratory conditions, but for research and development purposes, they may also be performed during an elevated or depressed portion of the temperature cycle in order to measure the effects of the temperature extreme on the performance parameter being evaluated. For the purposes of comparative evaluation, the parameters defined in 11.2 shall be used.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 Testing organizations using this practice shall have staff knowledgeable in heat transfer, fluid mechanics, instrumentation practice, and the specific requirements for the test methods specified. Testing personnel shall have a general knowledge of fenestration systems and components being tested.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 6.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method indicates the ability of a refractory product to withstand the stress generated by sudden changes in temperature.3.2 Because the recommended furnace temperature of this cycling test is 1200 °C (2190 °F), this test method may not indicate the ability of a refractory product to withstand cycling at higher or lower temperatures, especially if the existing morphology of the refractory product changes.3.3 This test method is useful for research and development, as well as for comparing refractory products. The precision should be considered when using this test for specification purposes.3.4 Ruggedness tests found the following variables to be rugged:Temperature +5 °CHot spacing 1/2 to 3/4 in. (12.77 to 19 mm)Cold spacing 1/2 to 3/4 in. (12.77 to 19 mm)Center versus end gripping of the barsHot hold time 10 to 15 minCold hold time 10 to 15 minOperator air speed 0 to 2 mi/h (0 to 3.2 km/h)Initially cold or heated samplesLast in, first out (LIFO); or first in, first out (FIFO) removal from the furnaceSawed or original surface as tensile face during MOR testingBar thickness 0.96 to 1.04 in. (24.5 to 26.4 mm)1.1 This test method is used for determining the strength loss or reduction in continuity, or both, of prism-shaped specimens which are cut from refractory brick or shapes and subjected to thermal cycling.1.2 The strength loss is measured by the difference in modulus of rupture (MOR) between uncycled specimens and the specimens subjected to thermal cycling.1.3 The reduction in structural continuity is estimated by the difference in sonic velocity before and after thermal cycling.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method covers one procedure for determining fatigue life at various extension-ratios. The strain cycle is characteristic of the type of test apparatus specified. Experience in fatigue testing shows that fatigue life may have a wide, non-normal distribution and, therefore, a large standard deviation that is compound dependent. Natural rubber, for example, has shown a narrower distribution than many synthetic rubbers. A large number of specimens may, therefore, be required to yield the desired precision. Comparison of different rubber compounds should be made with due consideration to the standard deviation for each (see 7.1).5.2 Fatigue data, as generated in this test method, give primarily an estimate of the crack initation behavior of a rubber vulcanizate and only a very approximate measure of the crack propagation rate. The information obtained may be useful in predicting the flex-life performance of a compound in active service; however, the user should be aware that in actual use, products are subjected to many other fatigue factors not measured in this test method.1.1 This test method covers the determination of fatigue life of rubber compounds undergoing a tensile-strain cycle. During part of the cycle, the strain is relaxed to a zero value. The specimens are tested without intentionally initiated flaws, cuts, or cracks. Failure is indicated by a complete rupture of the test specimen.1.2 No exact correlation between these test results and service is given or implied. This is due to the varied nature of service conditions. These test procedures do yield data that can be used for the comparative evaluation of rubber compounds for their ability to resist (dynamic) extension cycling fatigue.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F2032-22 Standard Specification for Helmets Used for BMX Cycling Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers performance requirements for helmets used in BMX cycling. Studies have shown higher risk to the head and face for this sport as compared to recreational street riding; So this specification requires impact protection over a larger area of the head. Performance criteria for helmets equipped with chin bars are provided. Retention system tests shall be performed before impact testing. The chin bar rigidity test applies to helmets with a chin bar only.1.1 This specification covers performance requirements for helmets used in BMX cycling. Studies have shown higher risk to the head and face for this sport as compared to recreational street riding; therefore, this specification requires impact protection over a larger area of the head than Specification F1447 and the CPSC standard. This specification also provides performance criteria for helmets equipped with chin bars.1.2 All testing and requirements of this specification shall be in accordance with Test Methods F1446 except where noted herein.1.3 Partial utilization of this specification is prohibited. Any statement of compliance with this specification shall be a certification that the headgear with faceguard meets all of the requirements of the specification in their entirety. A headgear with faceguard that fails to meet any one of the requirements of this specification is considered to have failed the specification, and shall not be sold with any indication that it meets parts of the specification.1.4 Headgear designed to comply with this and other standards may proclaim uses as certified by the manufacturer.1.5 This standard is subject to revision at any time by ASTM. It must be reviewed every five years and if not revised either reapproved or withdrawn. References to the standard must include the version date. No references to a version that has been replaced or withdrawn shall be placed on any product or its packaging manufactured more than 24 months after the effective revision or withdrawal date. Go to astm.org to verify the latest version of this standard.1.6 The values stated in SI units are to be regarded as standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
CAN/CSA-D113.2-M89 (R2004) Cycling Helmets 现行 发布日期 :  1970-01-01 实施日期 : 

This PDF includes GI #2 and #3. 1. Scope 1.1 This Standard applies to helmets intended to provide protection for the heads of cyclists and defines the areas of the head that are to be protected. It covers the basic performance requirements for shoc

定价: 410元 / 折扣价: 349

在线阅读 收 藏

5.1 Exposing a specimen to conditions of one-directional environmental cycling can increase its moisture content until a decrease in material properties occurs (at a specific number of cycles). Such a test could be inappropriate due to the number of cycles required to cause a decrease in material properties since product performance issues often arise only after many years of exposure. The use of a preconditioning procedure is not intended to duplicate expected field performance. Rather the purpose is to increase the moisture content of test materials prior to subjecting to them to environmental cycling.5.2 The most important aspect of the preconditioning procedure is non-uniform moisture distribution in the specimen. The heat flow is one directional causing moisture flow towards the cold side resulting in zones of dry material on the warm side and high moisture content on the cold side. (Whether the high moisture content zone is located right at the cold surface of the specimen or at some distance from this surface depends upon temperature oscillation and ability of the cold surface to dry outwards). Because the preconditioning procedure involves thermal gradient, this preconditioning procedure results in a distribution of moisture content that may occur under field exposure conditions. However, the resulting moisture content may differ significantly from that which may be demonstrated in typical product applications.5.3 The preconditioning results in accumulation of moisture in the thermal insulation resulting from the simultaneous exposure to a difference in temperature and water vapor pressure. This test method is not intended to duplicate field exposure. It is intended to provide comparative ratings. As excessive accumulation of moisture in a construction system may adversely affect its performance, the designer should consider the potential for moisture accumulation and the possible effects of this moisture on the system performance.1.1 This test method is applicable to preformed or field manufactured thermal insulation products, such as board stock foams, rigid fibrous and composite materials manufactured with or without protective facings. See Note 1. This test method is not applicable to high temperature, reflective or loose fill insulation.NOTE 1: If the product is manufactured with a facer, test product with facer in place.1.2 This test method involves two stages: preconditioning and environmental cycling. During the first stage, 25 mm (1 in.) thick specimens are used to separate two environments. Each of these environments has a constant but different temperature and humidity level. During the environmental cycling stage, specimens also divide two environments namely constant room temperature/humidity on one side and cycling temperature/ambient relative humidity on the other side.1.3 This test method measures the ability of the product to maintain thermal performance and critical physical attributes after being subjected to standardized exposure conditions. A comparison is made between material properties for reference specimens stored in the laboratory for the test period and specimens subjected to the two-stage test method. To eliminate the effect of moisture from the comparison, the material properties of the latter test specimens are determined after they have been dried to constant weight. The average value determined for each of the two sets of specimens is used for comparison.1.4 Different properties can be measured to assess the effect of environmental factors on thermal insulation. This test method requires that thermal resistance be determined based upon an average for three specimens measured after completing the test. Secondary elements of this test method include visual observations such as cracking, delamination or other surface defects, as well as the change in moisture content after each of the two stages of exposure prescribed by the test method.1.5 Characterization of the tested material is an essential element of this test method. Material properties used for characterization will include either compressive resistance or tensile strength values. The compressive resistance or tensile strength is measured on two sets of specimens, one set conditioned as defined in 1.2 and a set of reference test specimens taken from the same material batch and stored in the laboratory for the whole test period. For comparison, an average value is determined for each of the two sets of specimens.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The test for resistance to freezing and thawing functions as a guide to the selection of ceramic and glass tiles suitable for outdoor service in geographic areas subjected to freezing. It can serve as a test method to verify compliance with specifications for ceramic and glass tiles, and provides a control test for determining the freeze/thaw resistance of tiles being manufactured for exterior installations.1.1 This test method describes the procedures and equipment required to test either glazed or unglazed ceramic or glass tiles for resistance to repeated cycles of freezing and thawing. Tiles of any size or shape may be tested by this test method.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This testing is performed to determine the electrical contact reliability under switching conditions and the physical changes caused by mechanical actuation of the switch assembly in the environments in which the assemblies operate. Evidence of deterioration, that is, cracking of substrate, domes both metal and polyester, ink delamination, etc., resulting from this test can at times be determined by visual examination. However, the effects may be more readily ascertained by measurements made prior to, during, and after exposure. Total circuit resistance, force-displacement, dielectric strength, insulation resistance, and capacitance are types of measurements that show the deleterious effects due to exposure.1.1 This test method covers the setup, procedure, and apparatus required to depress and release a membrane switch to a predetermined number of cycles.1.2 This test method also covers the optional use of specified voltage and current during the cycling of the membrane switch.1.3 This test method can be used in conjunction with other ASTM standards such as Test Method F1596.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
20 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页