微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 This test method gives a measure of a key property of hook and loop touch fasteners which is of interest to users of such devices. This is a means of determining the resistance to separation when forces are applied parallel to the plane of the fastener.5.2 In the case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogenous as possible and which are from a lot of hook and loop of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student’s t-test and an acceptable probability level chosen by the two parties before the testing began. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in the light of the known bias.1.1 This test method measures the shear strength of hook and loop touch (CRE) fasteners using a recording constant rate of extension tensile testing machine.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 For matters relating to lot acceptance of commercial shipments and conformity to specification or other standard, refer to Section 13 of this test method.5.2 This test method is useful in the selection and design validation of permeable, uncoatable fabrics used in inflatable restraint cushions. The dynamic conditions and higher pressure differentials of this test method may better simulate the inflation and deflation cycle of an airbag module during deployment than do the steady-state conditions of Test Method D737.5.2.1 Only uncoated, permeable fabrics should be used. Use of coated fabrics may yield invalid results and potentially damage the test apparatus.5.3 Within the limits of variance expressed in Section 12, this test method is useful for design validation and may be suitable for incorporation in a material specification or for lot acceptance testing of commercial shipments. Caution is advised on very low permeability fabrics or with the 200 cm3 size test head because between-laboratory precision as presented in Section 12 may be as high as 21 %.5.4 This test method may be used for materials other than inflatable restraint fabrics which experience dynamic air permeability in sudden bursts. In such cases, the physical apparatus or its software algorithms may require modification to provide suitability for use.5.5 Due to the split-second time interval for testing, the pressure versus time data is subject to recording anomalies and electronic noise. The data should be digitally filtered to obtain the underlying smooth pressure curve prior to data analysis. The software in the apparatus includes a reliable algorithm both to smooth the curve and to determine the exponent of air permeability.5.6 It is inherent in the design and operation of this equipment that major components key to the calibration and measurements are specific to the individual test head. The size or permeability measuring range of the test head is typically chosen to correspond to the fabric specimen to be tested. The precision of this test method is highly dependent on the size of the test head. The precision of the data collected using one test head should be used to estimate the precision of data collected using a different test head, even on the same apparatus.5.7 It is mandatory that fabric specimens be conditioned and tested in standard atmosphere for testing textiles.1.1 This test method covers the procedures used to determine under dynamic airflow conditions the high pressure permeability of permeable, uncoated fabrics typically used for inflatable restraints. For the determination of air permeability of inflatable restraint fabrics under low pressure conditions at steady-state air flow, refer to Test Method D737.1.2 Procedures and apparatus other than those stated in this test method may be used by agreement of purchaser and supplier with the specific deviations from the standard acknowledged in the report.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The complex shear modulus of asphalt mixtures is a fundamental property of the material. Test results at critical temperatures (Tcritical) are used for specifications for some mixes. Mixtures with stiffer binders, aged mixes, mixtures with higher amounts of fines (material finer than 75 µ), and mixtures with lower voids all tend to have higher complex shear modulus values than mixtures with less stiff binders, unaged mixes, mixtures with low levels of fines, and higher air voids. In general, mixtures with higher complex shear modulus values at a given service temperature will exhibit lower permanent deformation values than similar mixtures tested at the same temperature that have lower complex shear modulus values.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the determination of the complex shear modulus of asphalt mixtures using torsion rectangular geometry on a dynamic shear rheometer (DSR). It is applicable to asphalt mixtures having complex shear modulus values greater than 1 × 104 Pa when tested over a range of temperatures from –40 °C to 76 °C at frequencies of 0.01 to 25 Hz and strains of 0.0005 % to 0.1 %. The determination of complex shear modulus is typically determined at 20 °C to 70 °C at 0.01 % strain at ten discrete frequency values covering 0.01 to 10 Hz. From these data, temperature or frequency master curves can be generated as required. This test method is intended for determining the complex shear modulus of asphalt mixtures as required for specification testing or quality control of asphalt mixture production.1.2 This test method is appropriate for laboratory-prepared and compacted mixtures, field-produced and laboratory-compacted mixtures or field cores, regardless of binder type or grade and regardless of whether RAP is used in the mixture. Due to the geometry of the specimens being tested this test method is not applicable to open-graded or SMA mixtures. It has been found to be appropriate for dense-graded mixtures, whether coarse- or fine-graded, with 19 mm or smaller nominal maximum aggregate size.1.3 Since a precision estimate for this standard has not been developed, the test method is to be used for research and informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This terminology is a compilation of definitions and descriptions of technical terms used in dynamic mechanical property measurements on polymeric materials, including solutions, melts, and solids. Terms that are generally understood or defined adequately in other readily available sources are either not included or sources identified.1.2 A definition is a single sentence with additional information included in notes. It is reviewed every five years and the year of the last review or revision is appended.1.3 Definitions identical to those published by another standards organization or ASTM committee are identified with the abbreviation of the name of the organization or the ASTM committee.1.4 Descriptions of terms specific to dynamic mechanical measurements are identified with an italicized introductory phrase.NOTE 1: This terminology standard is similar to ISO 6721–1 however, the ISO document cites fewer terms.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The user-level calibration process may be used to verify that the DF tester is functioning properly, that it is within manufacturer specifications, and to perform minor adjustments to bring the unit back into conformance with manufacturer specifications.5.2 The DF tester user-level calibration described herein does not eliminate all error sources, nor does it guarantee the proper operation of the device. Several adjustments and repairs are beyond the scope of this standard, and manufacturer-approved calibrations are still recommended on an annual basis.1.1 This test method describes the equipment and procedure to ensure that the calibration performed by various dynamic friction tester (DF tester) users is uniform and in accordance with manufacturer specifications. There are three models of the DF tester in use: (1) USB/personal computer, (2) controller, and (3) X-Y plotter. Procedures specific to the different models are noted. User-level calibration software is separate from the operation software and must be obtained from the manufacturer for the USB/personal computer model.1.2 This test method is a static calibration of the vertical load, friction (µ) force, and speed of the DF tester. Compliance to this user-level calibration procedure ensures a higher level of repeatable and reproducible performance of the DF tester when used in accordance with Test Method E1911.1.3 The user-level calibration doesn’t include the replacement of the mu spring or the adjustment of linearity of the DF tester. It is recommended that DF testers be inspected by a manufacturer-approved laboratory on an annual basis to replace the mu spring, ensure linearity, and to identify other non user-serviceable wear.1.4 The values stated in SI (metric) units are to be regarded as standard. The inch-pound equivalents are rationalized, rather than exact mathematical conversions.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 No single set of test conditions can represent all climatic and use conditions, so this WVTR test method serves more to compare different materials at a stated set of conditions than to predict their actual performance in the field under any conditions.5.2 The water vapor transmission rate, under known and carefully controlled conditions, may be used to evaluate the vapor barrier qualities of a sheet. Direct correlation of values obtained under different conditions of test temperature and relative humidity will be valid provided the barrier material under test does not undergo changes in solid state (such as a crystalline transition or melting point) at or between the conditions of test.1.1 This test method covers dynamic evaluation of the rate of transfer of water vapor through a flexible barrier material and allows conversion to the generally recognized units of water vapor transmission (WVT) as obtained by various other test methods including the gravimetric method described in Test Methods E96/E96M.1.2 Limitations—This test method is limited to flexible barrier sheet materials composed of either completely hydrophobic materials, or combinations of hydrophobic and hydrophilic materials having at least one surface that is hydrophobic.1.3 The minimum test value obtained by this test method is limited by the leakage of water vapor past the clamping seals of the test instrument. A reasonable value may be approximately 0.01 g/24 h·m2 for any WVTR method including the desiccant procedure of Test Methods E96/E96M at 37.8 °C, and 90 % relative humidity. This limit can be checked for each instrument with an impervious specimen such as aluminum foil. Calibration procedures can compensate for the leakage rate if so stated.1.4 This test method is not suitable for referee testing at this time, but is suitable for control testing and material comparison.1.5 Several other ASTM test methods are available to test a similar property. This test method is unique in that it closely duplicates typical product storage where a transfer of moisture from a package into the environment is allowed to proceed without constantly sweeping the environmental side with dry gas. Methods with constantly swept dry sides include Test Methods F1249 and F3299.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Many petroleum products, and some non-petroleum materials, are used as lubricants and the correct operation of the equipment depends upon the appropriate viscosity of the liquid being used. In addition, the viscosity of many petroleum fuels is important for the estimation of optimum storage, handling, and operational conditions. Thus, the accurate determination of viscosity is essential to many product specifications.5.2 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and petroleum products.5.3 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperature of 15 °C.1.1 This test method covers and specifies a procedure for the concurrent measurement of both the dynamic viscosity, η, and the density, ρ, of liquid petroleum products and crude oils, both transparent and opaque. The kinematic viscosity, ν, can be obtained by dividing the dynamic viscosity, η, by the density, ρ, obtained at the same test temperature.1.2 The result obtained from this test method is dependent upon the behavior of the sample and is intended for application to liquids for which primarily the shear stress and shear rate are proportional (Newtonian flow behavior).1.3 The precision has only been determined for those materials, viscosity ranges, density ranges, and temperatures as indicated in Section 15 on Precision and Bias. The test method can be applied to a wider range of materials, viscosity, density, and temperature. For materials not listed in Section 15 on Precision and Bias, the precision and bias may not be applicable.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method for the determination of cohesion in sliver, roving, or top in dynamic tests may be used for the acceptance testing of commercial shipments but caution is advised since information on between-laboratory precision is lacking. Comparative tests as directed in 5.1.1 may be advisable.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative test should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. The test results from the two laboratories should be compare using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The cohesive forces overcome in continuous drafting of slivers, rovings, or tops are affected by surface lubricants and such fiber properties as linear density, surface configuration, fiber length, fiber crimp, and fiber-frictional characteristics.5.2.1 The concept of drafting is one of the most important principles in the production of yarn from fibrous raw stock.5.2.2 The values of force to maintain drafting determined by this method are induced by mechanical means similar to those used in textile processing.5.2.3 The attenuation of textile fiber strands while in motion closely approximates actual textile processing conditions, and the relative values of force may be used to predict processing behaviors.5.3 Fiber cohesion is affected by the alignment of fiber in the textile strand and strand compaction in addition to the factors listed in 5.2. Although fibers are more nearly aligned in draw sliver than in card sliver, the draw sliver is more compact. Thus, for a given production run, the drafting forces are higher for draw sliver than for card sliver.5.4 In addition to the aforementioned effects on drafting forces, the direction of specimen movement through drafting rollers may give different drafting force. Fibers in slivers may have hooks of varying severity at one or both ends. Passage through drafting rollers results in higher drafting forces when the predominance of fiber hooks are oriented in the trailing mode of the strand.1.1 This test method describes the measurement of fiber cohesion as the dynamic cohesive force required to maintain drafting in rovings, slivers or tops when they are subjected to stress induced by passing between pairs of drafting rolls of different surface speeds. The cohesive force is converted to cohesive tenacity based on the linear density of the material.NOTE 1: For static tests refer to Test Method D2612.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Many microplastic particles enter the environment, including ambient waters and drinking water supplies, via wastewater sources resulting from both industrial processes and consumer products. The presence of high percentages of organic particles, including cellulose material originating from toilet paper and chitin-based materials originating from insect exoskeletons, makes visual identification and subsequent quantification of microplastic particles in wastewater difficult.5.2 This test method, associated sampling Practice D8332, and preparation Practice D8333 provide a standardized approach for the preparation of water and, particularly, wastewater samples. The isolation of microplastic particles from interfering contaminants by Practice D8333 enables positive identification and, therefore, quantification of microplastic particles.5.3 Using this test method, microplastic particles are characterized in terms of size, shape, and quantity, allowing for the enumeration of subsequent particle count for a given volume of sample. The method does not provide qualitative identification of plastic composition.1.1 This test method covers the determination of microplastic particle size distribution, shape characterization, and number concentration (particle counts) in sample extracts containing particles between 5 µm and 100 µm. Light is transmitted through a flow cell containing particles in liquid medium. The particles create shadows as they pass through the field of vision of a camera, producing a multitude of images. The images are then used to measure size, shape, and concentration.1.2 This test method is used as a complementary technique for microplastic particle and fiber polymer identification methods infrared microscopy and gas chromatography/mass spectroscopy pyrolysis.1.3 This test method requires that samples are collected according to Practice D8332 and prepared according to Practice D8333 prior to use.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Update No. 1 was published as notification that this is now a National Standard of Canada This PDF includes Update No. 1 Preface This is the first edition of CSA A123.21, Standard test method for the dynamic wind uplift resistance of mechanically

定价: 637元 / 折扣价: 542

在线阅读 收 藏

5.1 Test Method D6774, for determining maximum total contraction, crimp, and residual fiber shrinkage in textured filament yarns is suitable for acceptance testing of commercial shipments.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use the samples for such a comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The properties and their variability as measured by this method relate to bulk appearance, stretch and recovery of fabrics and dyeability of yarns.5.3 For some yarns, elapsed time between processing and testing has a marked effect on the results, of this test, especially during the first 72 h. The effect is caused by stress decay which is known to be minimal beyond the seventh day and after which time the yarn remains relatively stable. Therefore, specimens should only be compared if tested after the same elapsed time. Samples can be tested at-line, thus having little to no elapsed time between processing and testing.1.1 This test method covers the determination of crimp contraction, residual fiber shrinkage and their variability of all types of filament yarns (partially oriented yarn (POY), fully oriented yarn (FOY), flat yarns, textured and bulked continuous filament (BCF) carpet yarns) using an automated tester.NOTE 1: For another method of testing crimp in textured yarns, refer to Test Method D4031.1.1.1 This method may also be used for non-textured yarns.1.2 This test method is limited to crimped, multi-filament yarns ranging from 22.0 dtex to 890 dtex (15 denier to 800 denier) and for BCF yarns from 890 dtex to 4200 dtex (800 denier to 3800 denier).1.3 The values stated in SI units are to be regarded as standard. Inch-pound units in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
98 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页