微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The parameters obtained from Methods A and B are in terms of undrained total stress. However, there are some cases where either the rock type or the loading condition of the problem under consideration will require the effective stress or drained parameters be determined. 5.2 Method C, uniaxial compressive strength of rock is used in many design formulas and is sometimes used as an index property to select the appropriate excavation technique. Deformation and strength of rock are known to be functions of confining pressure. Method A, triaxial compression test, is commonly used to simulate the stress conditions under which most underground rock masses exist. The elastic constants (Methods B and D) are used to calculate the stress and deformation in rock structures. 5.3 The deformation and strength properties of rock cores measured in the laboratory usually do not accurately reflect large-scale in situ properties because the latter are strongly influenced by joints, faults, inhomogeneity, weakness planes, and other factors. Therefore, laboratory values for intact specimens shall be employed with proper judgment in engineering applications. Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means for evaluating some of those factors. 1.1 These four test methods cover the determination of the strength of intact rock core specimens in uniaxial and triaxial compression. Methods A and B determine the triaxial compressive strength at different pressures and Methods C and D determine the unconfined, uniaxial strength. 1.2 Methods A and B can be used to determine the angle of internal friction, angle of shearing resistance, and cohesion intercept. 1.3 Methods B and D specify the apparatus, instrumentation, and procedures for determining the stress-axial strain and the stress-lateral strain curves, as well as Young's modulus, E, and Poisson's ratio, υ. These methods do not make provisions for pore pressure measurements and specimens are undrained (platens are not vented). Thus, the strength values determined are in terms of total stress and are not corrected for pore pressures. These test methods do not include the procedures necessary to obtain a stress-strain curve beyond the ultimate strength. 1.4 Option A allows for testing at different temperatures and can be applied to any of the test methods, if requested. 1.5 This standard replaces and combines the following Standard Test Methods: D2664 Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements; D5407 Elastic Moduli of Undrained Rock Core Specimens in Triaxial Compression Without Pore Pressure Measurements; D2938 Unconfined Compressive Strength of Intact Rock Core Specimens; and D3148 Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression. The original four standards are now referred to as Methods in this standard. 1.5.1 Method A—Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements. 1.5.1.1 Method A requires strength determination only. Strain measurements and a stress-strain curve are not required. 1.5.2 Method B—Elastic Moduli of Undrained Rock Core Specimens in Triaxial Compression Without Pore Pressure Measurements. 1.5.3 Method C—Uniaxial Compressive Strength of Intact Rock Core Specimens. 1.5.3.1 Method C requires strength determination only. Strain measurements and a stress-strain curve are not required. 1.5.4 Method D—Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression. 1.5.5 Option A: Temperature Variation—Applies to any of the methods and allows for testing at temperatures above or below room temperature. 1.6 For an isotropic material in Test Methods B and D, the relation between the shear and bulk moduli and Young's modulus and Poisson's ratio are: where: G   =   shear modulus, K   =   bulk modulus, E   =   Young's modulus, and υ   =   Poisson's ratio. 1.6.1 The engineering applicability of these equations decreases with increasing anisotropy of the rock. It is desirable to conduct tests in the plane of foliation, cleavage or bedding and at right angles to it to determine the degree of anisotropy. It is noted that equations developed for isotropic materials may give only approximate calculated results if the difference in elastic moduli in two orthogonal directions is greater than 10 % for a given stress level. Note 1: Elastic moduli measured by sonic methods (Test Method D2845) may often be employed as a preliminary measure of anisotropy. 1.7 Test Methods B and D for determining the elastic constants do not apply to rocks that undergo significant inelastic strains during the test, such as potash and salt. The elastic moduli for such rocks should be determined from unload-reload cycles that are not covered by these test methods. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method. 1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. 1.9.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The property KIc determined by this test method characterizes the resistance of a material to fracture in a neutral environment in the presence of a sharp crack under essentially linear-elastic stress and severe tensile constraint, such that (1) the state of stress near the crack front approaches tritensile plane strain, and (2) the crack-tip plastic zone is small compared to the crack size, specimen thickness, and ligament ahead of the crack.5.1.1 Variation in the value of KIc can be expected within the allowable range of specimen proportions, a/W and W/B. KIc may also be expected to rise with increasing ligament size. Notwithstanding these variations, however, KIc is believed to represent a lower limiting value of fracture toughness (for 2 % apparent crack extension) in the environment and at the speed and temperature of the test.5.1.2 Lower and more highly variable values of fracture toughness can be obtained from specimens that fail by cleavage fracture; for example, specimens of ferritic steels tested at temperatures in the ductile-to-brittle transition region or below. Specimens failing by cleavage are also more likely to exhibit warm prestressing effects, where precracking at a temperature higher than the test temperature can artificially increase the fracture toughness measured (2). The present test method is not intended for cleavage fracture. Instead, the user is referred to Test Method E1921 and E1820 which are applicable to cleavage fracture and contain safeguards against warm prestressing. Likewise this test method should not be used when specimen failure is accompanied by appreciable plastic deformation even after the specimen size has been maximized within product dimensional constraints. Guidance on testing elastic-plastic materials is given in Test Method E1820.5.1.3 The value of KIc obtained by this test method may be used to estimate the relation between failure stress and crack size for a material in service wherein the conditions of high constraint described above would be expected. Background information concerning the basis for development of this test method in terms of linear elastic fracture mechanics may be found in Refs (1) and (3).5.1.4 Cyclic forces can cause crack extension at KI values less than KIc. Crack extension under cyclic or sustained forces (as by stress corrosion cracking or creep crack growth) can be influenced by temperature and environment. Therefore, when KIc is applied to the design of service components, differences between laboratory test and field conditions shall be considered.5.1.5 Plane-strain fracture toughness testing is unusual in that there can be no advance assurance that a valid KIc will be determined in a particular test. Therefore, compliance with the specified validity criteria of this test method is essential.5.1.6 Residual stresses can introduce bias into the indicated KQ and KIc value determinations. The effect can be especially significant for specimens removed from as-heat treated or otherwise non-stress relieved stock, from weldments, from complex wrought products, rapidly-solidified castings, additively-manufactured products or from products with intentionally induced residual stresses. In addition, residual stresses will redistribute when the specimen is extracted from the host product and machined. The magnitude of residual stress influence on KQ and KIc in the test specimen may be quite different from that in the original or finish machined product. In addition, the behavior of cracks in the full-sized product may not be predictable from the fracture toughness measured on the specimen because of the influence of the different residual stresses in each. Indications of residual stress include distortion during specimen machining, results that are specimen configuration dependent, and irregular fatigue precrack growth (either excessive crack front curvature or out-of-plane growth). Guide B909 provides supplementary guidelines for plane strain fracture toughness testing of aluminum alloy products for which complete stress relief is not practicable. Guide B909 includes additional guidelines for recognizing when residual stresses may be significantly biasing test results, and methods for minimizing the effects of residual stress during testing.5.2 This test method can serve the following purposes:5.2.1 In research and development, to establish in quantitative terms significant to service performance, the effects of metallurgical variables such as composition or heat treatment, or of fabricating operations such as welding or forming, on the fracture toughness of new or existing materials.5.2.2 In service evaluation, to establish the suitability of a material for a specific application for which the stress conditions are prescribed and for which maximum flaw sizes can be established with confidence.FIG. 2 Double–Cantilever Clip-In Displacement Gage Showing Mounting by Means of Integral Knife Edges(Gage Design Details are Given in Annex A1)5.2.3 For specifications of acceptance and manufacturing quality control, but only when there is a sound basis for specifying minimum KIc values, and then only if the dimensions of the product are sufficient to provide specimens of the size required for valid KIc determination. The specification of KIc values in relation to a particular application should signify that a fracture control study has been conducted for the component in relation to the expected loading and environment, and in relation to the sensitivity and reliability of the crack detection procedures that are to be applied prior to service and subsequently during the anticipated life.1.1 This test method covers the determination of fracture toughness (KIc and optionally KIsi) of metallic materials under predominantly linear-elastic, plane-strain conditions using fatigue precracked specimens having a thickness of 1.6 mm (0.063 in.) or greater2 subjected to slowly, or in special (elective) cases rapidly, increasing crack-displacement force. Details of test apparatus, specimen configuration, and experimental procedure are given in the annexes. Two procedures are outlined for using the experimental data to calculate fracture toughness values:1.1.1 The KIc test procedure is described in the main body of this test standard and is a mandatory part of the testing and results reporting procedure for this test method. The KIc test procedure is based on crack growth of up to 2 % percent of the specimen width. This can lead to a specimen size dependent rising fracture toughness resistance curve, with larger specimens producing higher fracture toughness results.1.1.2 The KIsi test procedure is described in Appendix X1 and is an optional part of this test method. The KIsi test procedure is based on a fixed amount of crack extension of 0.5 mm, and as a result, KIsi is less sensitive to specimen size than KIc. This less size-sensitive fracture toughness, KIsi, is called size-insensitive throughout this test method. Appendix X1 contains an optional procedure for reinterpreting the force-displacement test record recorded as part of this test method to calculate the additional fracture toughness value, KIsi.NOTE 1: Plane-strain fracture toughness tests of materials thinner than 1.6 mm (0.063 in.) that are sufficiently brittle (see 7.1) can be made using other types of specimens (1).3 There is no standard test method for such thin materials.1.2 This test method is divided into two parts. The first part gives general recommendations and requirements for testing and includes specific requirements for the KIc test procedure. The second part consists of Annexes that give specific information on displacement gage and loading fixture design, special requirements for individual specimen configurations, and detailed procedures for fatigue precracking. Additional annexes are provided that give specific procedures for beryllium and rapid-force testing, and the KIsi test procedure, which provides an optional additional analysis procedure for the test data collected as part of the KIc test procedure.1.3 General information and requirements common to all specimen configurations:  SectionReferenced Documents 2Terminology 3 Stress-Intensity Factor 3.1.1 Plane-Strain Fracture Toughness 3.1.2 Crack Plane Orientation 3.1.4Summary of Test Method 4 5 Significance 5.1 Precautions 5.1.1 – 5.1.5 Practical Applications 5.2Apparatus (see also 1.4) 6 Tension Machine 6.1 Fatigue Machine 6.2 Loading Fixtures 6.3 Displacement Gage, Measurement 6.4Specimen Size, Configurations, and Preparation (see also 1.5) 7 Specimen Size Estimates 7.1 Standard and Alternative Specimen Configurations 7.2 Fatigue Crack Starter Notches 7.3.1 Fatigue Precracking (see also 1.6) 7.3.2 Crack Extension Beyond Starter Notch 7.3.2.2General Procedure 8 Specimen Measurements    Thickness 8.2.1  Width 8.2.2  Crack Size 8.2.3  Crack Plane Angle 8.2.4 Specimen Testing    Loading Methods 8.3  Loading Rate 8.4  Test Record 8.5Calculation and Interpretation of Results 9 Test Record Analysis 9.1 Pmax/PQ Validity Requirement 9.1.3 Specimen Size Validity Requirements 9.1.4Reporting 10Precision and Bias 111.4 Specific requirements related to test apparatus:Double-Cantilever Displacement Gage Annex A1Testing Fixtures Annex A2Bend Specimen Loading Fixture Annex A2.1Compact Specimen Loading Clevis Annex A2.21.5 Specific requirements related to individual specimen configurations:Bend Specimen SE(B) Annex A3Compact Specimen C(T) Annex A4Disk-Shaped Compact Specimen DC(T) Annex A5Arc-Shaped Tension Specimen A(T) Annex A6Arc-Shaped Bend Specimen A(B) Annex A71.6 Specific requirements related to special test procedures:Fatigue Precracking KIc and KIsi Specimens Annex A8Hot-Pressed Beryllium Testing Annex A9Rapid-Force Testing Annex A10Determination of KIsi Appendix X11.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce through-thickness failure data for structural design and analysis, quality assurance, and research and development. Factors that influence the through-thickness tensile strength, and should therefore be reported, include the following: material and fabric reinforcement, methods of material and fabric preparation, methods of processing and specimen fabrication, specimen stacking sequence, specimen conditioning, environment of testing, specimen alignment, speed of testing, time at temperature, void content, and volume reinforcement content.1.1 This test method determines the through-thickness “flatwise” tensile strength and elastic modulus of fiber reinforced polymer matrix composite materials. A tensile force is applied normal to the plane of the composite laminate using adhesively bonded thick metal end-tabs. The composite material forms are limited to continuous fiber (unidirectional reinforcement or two-dimensional fabric) or discontinuous fiber (nonwoven or chopped) reinforced composites.1.2 The through-thickness strength results using this test method will in general not be comparable to Test Method D6415 since this method subjects a relatively large volume of material to an almost uniform stress field while Test Method D6415 subjects a small volume of material to a non-uniform stress field.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard may involve hazardous materials, operations, and equipment.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

The primary advantages of ultrasonic testing are that it yields compression and shear wave velocities, and ultrasonic values for the elastic constants of intact homogeneous isotropic rock specimens (3). Elastic constants are not to be calculated for rocks having pronounced anisotropy by procedures described in this test method. The values of elastic constants often do not agree with those determined by static laboratory methods or the in situ methods. Measured wave velocities likewise may not agree with seismic velocities, but offer good approximations. The ultrasonic evaluation of rock properties is useful for preliminary prediction of static properties. The test method is useful for evaluating the effects of uniaxial stress and water saturation on pulse velocity. These properties are in turn useful in engineering design. The test method as described herein is not adequate for measurement of stress-wave attenuation. Also, while pulse velocities can be employed to determine the elastic constants of materials having a high degree of anisotropy, these procedures are not treated herein. Note 2—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing and sampling. Users of this standard are cautioned that compliance with Practice D 3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D 3740 provides a means of evaluating some of those factors.1.1 This test method describes equipment and procedures for laboratory measurements of the pulse velocities of compression waves and shear waves in rock (1) and the determination of ultrasonic elastic constants (Note 1) of an isotropic rock or one exhibiting slight anisotropy. Note 1—The elastic constants determined by this test method are termed ultrasonic since the pulse frequencies used are above the audible range. The terms sonic and dynamic are sometimes applied to these constants but do not describe them precisely (2). It is possible that the ultrasonic elastic constants may differ from those determined by other dynamic methods. 1.2 This test method is valid for wave velocity measurements in both anisotropic and isotropic rocks although the velocities obtained in grossly anisotropic rocks may be influenced by such factors as direction, travel distance, and diameter of transducers. 1.3 The ultrasonic elastic constants are calculated from the measured wave velocities and the bulk density. The limiting degree of anisotropy for which calculations of elastic constants are allowed and procedures for determining the degree of anisotropy are specified. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

6.1 This test method provides standard procedures for experimentally determining the XEC for use in the measurement of residual and applied stresses using x-ray diffraction techniques. It also provides a standard means of reporting the precision of the XEC.6.2 This test method is applicable to any crystalline material that exhibits a linear relationship between stress and strain in the elastic range, that is, only applicable to elastic loading.6.3 This test method should be used whenever residual stresses are to be evaluated by x-ray diffraction techniques and the XEC of the material are unknown.1.1 This test method covers a procedure for experimentally determining the x-ray elastic constants (XEC) for the evaluation of residual and applied stresses by x-ray diffraction techniques. The XEC relate macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. The XEC are a function of the elastic modulus, Poisson’s ratio of the material and the hkl plane selected for the measurement. There are two XEC that are referred to as 1/2 S2hkl and S1 hkl.1.2 This test method is applicable to all x-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing.1.3 This test method is applicable to all x-ray diffraction techniques for residual stress measurement, including single, double, and multiple exposure techniques.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers a procedure for determining the rigidity of bone staples. 1.2 The values stated in either inch-pound or SI units are to be regarded separately as the standard. The units given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Elastic recovery is related to the ability of a package to resume its original shape after being distended during its use cycle.5.2 Elastic recovery also relates to the tightness or snugness of a package.5.3 Stress retention is related to the tightness or snugness of a package.1.1 This test method covers the measurement of recovery from extension, permanent deformation, and stress retention of stretch wrap film.1.2 Several levels of extension are included to ascertain the effect of both small and large extensions.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method for testing loop tension and elongation of elastic fabrics is considered satisfactory for acceptance testing of commercial shipments of elastic fabrics because the test method is used in the trade for acceptance testing.5.1.1 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the parties should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.5.2 This test method specifies the use of the CRE-type tensile testing machine. Users of this test method are cautioned that loop tension test data obtained using this method are not comparable to tension test data obtained using Test Method D1775 because of the differences in testing machines. Test Method D1775 uses a CRL-type tensile testing machine.5.3 The loop tension and extension relationship of an elastic fabric is an important criterion for judging the suitability of the fabric for various end uses, such as: foundation garments, brassieres, and swimsuits.5.4 Data from loop tension-recovery curves can be compared only if the tension testing machine, rate-of-extension, maximum loading (or extension), and specimen specifications are comparable. Since different machine set-ups will cause different results on the same fabric, machine set-ups must always be specified before making a test and be reported with the test results.5.5 The test for measuring loop tension at specified elongation(s) is used to determine the tension of an elastic fabric when subjected to a specified elongation which is less than the elongation required to rupture the fabric. The test prescribes points of measurement on the extending (outgoing) cycle only.5.6 The test for measuring elongation at specified tension(s) is used to determine the elongation of an elastic fabric when subjected to a specified loop tension which is less than the tension required to rupture the fabric. The test prescribes points of measurement on the loading (outgoing) cycle only.1.1 This test method covers the measurement of tension and elongation of wide or narrow elastic fabrics made from natural or man-made elastomers, either alone or in combination with other textile yarns, when tested with a constant-rate-of-extension (CRE) type tensile testing machine.NOTE 1: For determination of similar testing using the constant-rate-of-load (CRL) type tensile testing machine, refer to Test Method D1775.1.2 The use of this test method requires the selection of, or mutual agreement upon, loop tension(s) and elongation(s) at which the test results will be determined.1.3 Laundering procedures require mutual agreement on the selection of temperature and number of washing cycles and drying cycles to be used.1.4 The values stated in SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore each system must be used independently of the other, without combining values in any way.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice for plane-strain fracture toughness testing of aluminum alloys may be used as a supplement to Test Method E399. The application of this practice is primarily intended for quality assurance and material release in cases where valid plane-strain fracture toughness data cannot be obtained per Test Method E399.5.2 It must be understood that the interpretations and guidelines in this practice do not alter the validity requirements of Test Method E399 or promote the designation of data that are invalid according to Test Method E399 to a “valid” condition. This practice is primarily concerned with cases where it is not possible or practical to obtain valid data, but where material release judgments must be made against specified fracture toughness values. Where it is possible to obtain a valid plane-strain fracture toughness value by replacement testing according to Test Method E399, that is the preferred approach.1.1 This practice is applicable to the fracture toughness testing of all aluminum alloys, tempers, and products, especially in cases where the tests are being made to establish whether or not individual lots meet the requirements of specifications and should be released to customers.1.2 Test Method E399 is the basic test method to be used for plane-strain fracture toughness testing of aluminum alloys. The purpose of this practice is to provide supplementary information for plane-strain fracture toughness of aluminum alloys in three main areas:1.2.1 Specimen sampling,1.2.2 Specimen size selection, and1.2.3 Interpretation of invalid test results.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Certain inch-pound values given in parentheses are provided for information only.1.4 This standard is currently written to accommodate only C(T) specimens.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The viscous and elastic behavior of unvulcanized rubbers and rubber compounds is of paramount importance in rubber manufacturing, since it affects processing, such as mixing, calendering, extrusion, and molding. The uniformity of these properties is equally important, as fluctuations will cause upsets in manufacturing processes.5.2 A test capable of measuring viscosity and elasticity of unvulcanized rubbers and rubber compounds, including their uniformity and prediction of processing behavior, is therefore highly desirable (see Practice D6048 for further information).5.3 Compared to many other rheological tests, this test method measures viscosity and elasticity related parameters under conditions of low shear and has a high discriminating power. It can detect small rheological differences. A full discussion of the principles behind stress relaxation testing is given in Practice D6048.5.4 Test results of this test method may be useful in predicting processability, but correlation with actual manufacturing processes must be established in each individual case, since conditions vary too widely.5.5 This test method is suitable for specification compliance testing, quality control, referee purposes, and research and development work.1.1 This test method is an adaptation of the German Standard DIN 53514, a further development of the former “Defo Test” (see Appendix X1).1.2 This test method is capable of measuring and characterizing the rheological behavior (viscosity and elasticity) of unvulcanized raw rubbers and rubber compounds, relating to the macro structure of rubber polymers (average molecular weight, molecular weight distribution, long chain branching, and micro- and macro-gel).1.3 The viscosity and elasticity of unvulcanized rubbers and rubber compounds are determined by subjecting cylindrical test pieces to a compression/recovery cycle. The dependency on shear rate at constant shear stress is evaluated and the material fatigue behavior is determined in repeat cycle testing.1.4 The non-Newtonian viscous and elastic behavior of rubbers and rubber compounds can also be evaluated.1.5 Statistical evaluation of the test data provides an indication of data variation, which may be employed as an estimate of the homogeneity of the material tested.1.6 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method is useful in confirming that a material has been added to the asphalt to provide a significant elastomeric characteristic. It does not necessarily identify the type or amount of material added.NOTE 1: The quality of results produced by this standard is dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guidance provides a means of evaluating and controlling some of those factors.1.1 This test method assesses the elastic recovery of an asphalt material measured by the recoverable strain determined after severing an elongated briquet specimen of the material of the form described in 4.1. The specimens are pulled to a specified distance at a specified speed and at a specified temperature. Unless otherwise specified, the test shall be made at a temperature of 25 ± 0.5 °C [77 ± 0.9 °F] and with a speed of 5 cm/min ± 5 %.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/index.htm) for additional information. Users should be aware that selling mercury and/or mercury-containing products in your state may be prohibited by state law.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is considered satisfactory for acceptance testing of commercial shipments of narrow elastic fabrics because the test method is used in the trade for acceptance testing.5.1.1 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the parties should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using student's t-test for unpaired data and an acceptable probability level chosen by the two parties before testing is begun. If bias is found, either the cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in the light of the known bias.5.2 This test method specifies the use of a static load apparatus. Users of this test method are cautioned that elongation test data obtained using this test method are not comparable to elongation test data obtained using either constant-rate-of-extension (CRE) or constant-rate-of-loading (CRL) type tensile testing machines.1.1 This test method determines the elongation characteristics of narrow elastic fabrics made from natural or man-made elastomers, either alone or in combination with other textile fibers, when tested with a static load testing procedure before or after laundering.NOTE 1: For determination of similar characteristics using the constant-rate-of-extension (CRE) type tensile testing machine, refer to Test Method D4964.NOTE 2: For determination of similar characteristics using the constant-rate-of load (CRL) type tensile testing machine, refer to Test Method D1775.1.2 The use of this test method requires the selection of, or mutual agreement upon, the effective static load at which the test results will be determined.1.3 Laundering procedures used will be those specified in Test Method AATCC 135 for 3 washing and drying cycles.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers a jet-fuel-resistant concrete joint sealer, of the hot-applied elastic type, intended for use in sealing joints in concrete pavement in areas exposed to jet fuel spillage. It may be found useful in industrial areas where similar conditions exist (see Appendix X1).1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance to the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in Appendix X1.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Since the beginning of human history, currency has existed in the form of metal coins and bullion. Thieves learned that shaving some precious metal provided a method to change its value. Substitution of common metals for precious metals of higher value was commonplace until weighing methods became so accurate, that it became easily detected. Alloys were also used as substitutes until inexpensive spectrometers became available which ended the counterfeiting practice. The rapid rise in the value of gold inspired the unscrupulous to find a new method. Tungsten was widely used for light bulb filaments until regulations changed that market. The great abundance of tungsten now available, coupled with the almost identical density of gold, presented a new opportunity.5.2 RUS provides a method to create an unique electronic signature for each piece tested which is operator independent.1.1 This practice is intended for use with resonant ultrasound spectrometers capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the acoustic or ultrasonic, or both, resonant frequency ranges.1.2 This practice uses Resonant Ultrasound Spectroscopy (RUS) to distinguish conforming parts, as determined from qualified training sets, from those containing significant anomalies in their elastic properties.1.3 The basic functions of a RUS monitoring system are to detect and classify resonance phenomena. Solid structure resonances are governed by the part’s dimensions, density, and elastic properties. When a material substitution occurs in a precious metal, the chosen metals have almost identical densities and unchanged dimensions, leaving only the elastic properties to affect the resonances.1.4 This practice can be used to replace destructive methods, which damage the test object through drilling or melting, or both.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The dynamic interaction between the athlete and the surface is significant to the performance and comfort of the athlete. Therefore, the ability of the surface to deform under load is important. Too high a vertical deformation can affect the athlete through instability of the foot. Area elastic and combination elastic floors may be further characterized by evaluating the area deflection properties of the surface. Floors with low area deflection levels prevent or remove vibrations through damping mechanisms or design components.4.2 Vertical deformation is a widely used and recognized property of sports surfaces. Governing bodies, trade associations, and a number of international standards recognize the significance of vertical deformation. A partial list of these organizations includes: FIBA, MFMA, ASTM, EN. Even FIFA utilizes a variation of this property. Area deflection is still commonly specified within North America and one governing body (FIBA) and one trade association (MFMA) currently use this property to certify systems within the required testing for their performance programs.4.3 Vertical deformation and area deflection testing are performed with a Stuttgart Artificial Athlete (SAA) which can be created by slightly modifying the BAA (Berlin Artificial Athlete) from Test Method F2569. Laboratory experiments are to be conducted at the standard 23 ± 2°C (72 ± 4°F), but tests at additional temperatures may be performed at the request of the client. When evaluating the deflective properties of sports surfaces in the field, testing is to be conducted at the ambient temperature. Deviations from the standard temperature may cause significantly different performance levels.1.1 This method covers the quantitative measurement and normalization of deflections generated within a sports surface as an indication of the stability and comfort provided by the system.1.2 Vertical deformation provides a measure for the vertical motion generated within the sports surface system directly below the point of impact which has been normalized to a standard impact force.1.3 Area deflection provides a measure of the vibrations generated during an impact and their strength at a pre-determined distance from the point of impact.1.4 This method is not applicable to natural turf, synthetic turf or playground safety surfaces.1.5 This method is applicable to indoor and outdoor surfaces including but not limited to: wood and synthetic courts, walk/jog/run tracks, tennis courts, dance surfaces, aerobics and general fitness surfaces.1.6 The methods described are applicable in both laboratory and field settings.1.7 Area deflection testing is optional, and only applicable to area-elastic, combined elastic and mixed elastic sport surfaces. These include wood surfaces, synthetic surfaces on a sprung wood subfloor, and point elastic surfaces with an internal area elastic component.1.8 The values stated in SI units are to be regarded as standard. Units provided in parenthesis are informational only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
25 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页