微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 819元 / 折扣价: 697

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 1177元 / 折扣价: 1001 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

定价: 605元 / 折扣价: 515

在线阅读 收 藏

4.1 This guide covers procedures for crevice-corrosion testing of iron-base and nickel-base stainless alloys in seawater. The guidance provided may also be applicable to crevice corrosion testing in other chloride containing natural waters and various laboratory prepared aqueous chloride environments.4.1.1 While this guide focuses on testing of iron-base and nickel-base stainless alloys, the procedures and evaluations methods described herein have been successfully applied to characterize the crevice corrosion performance of other alloy systems (see, for example, Aylor et al.3).NOTE 1: In the case of copper alloys, the occurrence of crevice-related corrosion associated with different corrosion mechanisms takes place immediately adjacent to the crevice former rather than within the occlusion.4.2 This guide describes the use of a variety of crevice formers including the nonmetallic, segmented washer design referred to as the multiple crevice assembly (MCA) as described in 9.2.2.4.3 In-service performance data provide the most reliable determination of whether a material would be satisfactory for a particular end use. Translation of laboratory data from a single test program to predict service performance under a variety of conditions should be avoided. Terms, such as immunity, superior resistance, etc., provide only a general and relatively qualitative description of an alloy's corrosion performance. The limitations of such terms in describing resistance to crevice corrosion should be recognized.4.4 While the guidance provided is generally for the purpose of evaluating sheet and plate materials, it is also applicable for crevice-corrosion testing of other product forms, such as tubing and bars.4.5 The presence or absence of crevice corrosion under one set of conditions is no guarantee that it will or will not occur under other conditions. Because of the many interrelated metallurgical, environmental, and geometric factors known to affect crevice corrosion, results from any given test may or may not be indicative of actual performance in service applications where the conditions may be different from those of the test.1.1 This guide covers information for conducting crevice-corrosion tests and identifies factors that may affect results and influence conclusions.1.2 These procedures can be used to identify conditions most likely to result in crevice corrosion and provide a basis for assessing the relative resistance of various alloys to crevice corrosion under certain specified conditions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific warning statement, see 7.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This practice covers procedures for the identification and measurement of the extent of carburization in a metal sample and for the interpretation and evaluation of the effects of carburization. It applies mainly to iron- and nickel-based alloys for high temperature applications. Four methods are described. MethodA Total Mass Gain MethodB Metallographic Evaluation MethodC Carbon Diffusion Profile MethodD Change in Mechanical Properties 1.2 These methods are intended, within the interferences as noted for each, to evaluate either laboratory specimens or commercial product samples that have been exposed in either laboratory or commercially produced environments. 1.3 No attempt is made to recommend particular test exposure conditions, procedures, or specimen design as these may vary with the test objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Emissions of VOCs are typically controlled by internal mass-transfer limitations (for example, diffusion through the material), while emissions of SVOCs are typically controlled by external mass-transfer limitations (migration through the air immediately above the material). The emission of some chemicals may be controlled by both internal and external mass-transfer limitations. In addition, due to their lower vapor pressure, SVOCs generally adsorb to different media (chamber walls, building materials, particles, and other surfaces) at greater rates than VOCs. This sorption can increase the amount of time required to reach steady-state SVOC concentrations using conventional VOC emission test methods to months for a single test (2).4.2 Thus, existing methods for characterizing emissions of VOCs may not be appropriate or practical to properly characterize emission rates of SVOCs for use in modeling SVOC concentrations in indoor environments. A mass-transfer framework is needed to accurately assess emission rates of SVOCs when predicting the SVOC indoor air concentrations in indoor environments. The SVOC mass-transfer framework includes SVOC emission characteristics and its partition to multimedia including sorption to indoor surfaces, airborne particles, and settled dust. Once the SVOC emission parameters and partitioning coefficients have been determined, these values can be used to modeling SVOC indoor concentrations.1.1 This guide is intended to serve as a foundation for understanding when to use emission testing methods designed for volatile organic compounds (VOCs) to determine area-specific emission rates that are typically used in modeling indoor air VOC concentrations and when to use emission testing methods designed for semi-volatile organic compounds (SVOCs) to determine mass transfer emission parameters that are typically used to model indoor air, dust, and surface SVOC concentrations.1.2 This guide discusses how organic chemicals are conventionally categorized with respect to volatility.1.3 This guide presents a simplified mass-transfer model describing organic chemical emissions from a material to bulk air. The values of the model parameters are shown to be specific to material/chemical/chamber combinations.1.4 This guide shows how to use a mass-transfer model to estimate whether diffusion of the chemical within the material or convective mass transfer of the chemical from the surface of the material to the overlying air limits chemical emissions from the material surface.1.5 This guide describes the range of different chambers that are available for emission testing. The chambers are classified as either dynamic or static and either conventional or sandwich. The chambers are categorized as being optimal to determine either the area-specific emission rate or mass-transfer emission parameters.1.6 This guide discusses the roles sorption and convective mass-transfer coefficients play in selecting the appropriate emission chamber and analysis method to accurately and efficiently characterize emissions from indoor materials for use in modeling indoor chemical concentrations.1.7 This guide recommends when to choose an emission test method that is optimized to determine either the area-specific emission rate or mass-transfer emission parameters. For chemicals where the controlling mass-transfer process is unknown, the guide outlines a procedure to determine if the chemical emission is controlled by convective mass transfer of the chemical from the material.1.8 This guide does not provide specific guidance for measuring emission parameters or conducting indoor exposure modeling.1.9 Mechanisms controlling emissions from wet and dry materials and products are different. This guide considers the emission of chemicals from dry materials and products. Examples of functional uses of VOCs and SVOCs that this guide applies to include blowing agents, flame retardants, adhesives, plasticizers, solvents, antioxidants, preservatives, and coalescing agents (1).2 Emission estimations for other VOC and SVOC classes including those generated by incomplete combustion, spray application, or application as a powder (pesticides, termiticides, herbicides, stain repellents, sealants, water repellants) (1) may require different approaches than outlined in this guide because these processes can increase short-term concentrations of chemicals in the air independent of the volatility of the chemical and its categorization as a VVOC (very volatile organic compounds), VOC, SVOC, or NVOC (non-volatile organic compounds).1.10 The effects of the emissions (for example, exposure, and health effects on occupants) are not addressed and are beyond the scope of this guide.1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This guide is meant to aid local and regional spill response teams who may apply it during response planning and spill events.3.2 This guide presents data on the effects of surface oil, dissolved oil and dispersed oil on components of tropical environments. These data can aid in decision-making related to the use of dispersants to minimize environmental damage from oil spills.1.1 This guide covers recommendations for use of chemical dispersants to assist in the control of oil spills and is written with the goal of minimizing the environmental impacts of oil spills. Aesthetic and socioeconomic factors are not considered; although, these and other factors are often important in spill response.1.2 Each on-scene commander has available several means of control or cleanup of spilled oil. Chemical dispersants should be given equal consideration with other spill countermeasures.1.3 This guide presents general guidelines only. The dispersibility of the oil with the chosen dispersant should be evaluated in compliance with relevant government regulations. Oil, as used in this guide, includes crude oils and fuel oils. Differences between individual dispersants and to a certain degree, differences between different oils are not considered.1.4 This guide is one of several related to dispersant considerations in different environments. The other standards are listed in Section 2.1.5 This guide applies to marine and estuarine environments but not to freshwater environments.1.6 In making dispersant use decisions, appropriate government authorities should be consulted as required by law.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method evaluates the relative sensitivity of materials to mechanical impact in ambient pressure liquid oxygen, pressurized liquid oxygen, and pressurized gaseous oxygen.5.2 Any change or variation in test sample configuration, thickness, preparation, or cleanliness may cause a significant change in impact sensitivity/reaction threshold.5.3 Suggested criteria for discontinuing the tests are: (1) occurrence of two reactions in a maximum of 60 samples or less tested at the maximum energy level of 98 J (72 ft•lbf) or one reaction in a maximum of 20 samples tested at any other energy level for a material that fails; (2) no reactions for 20 samples tested at the 98-J (72-ft•lbf) energy level; or (3) a maximum of one reaction in 60 samples tested at the maximum energy level.1.1 This test method2 describes test equipment and techniques to determine the impact sensitivity of materials in oxygen under two different conditions: (1) in ambient pressure liquid oxygen (LOX) or (2) under pressure-controlled conditions in LOX or gaseous oxygen (GOX). It is applicable to materials for use in LOX or GOX systems at pressures from ambient to 68.9 MPa (0 to 10 000 psig). The test method described herein addresses testing with pure oxygen environments; however, other oxygen-enriched fluids may be substituted throughout this document.1.2 This test method provides a means for ranking nonmetallic materials as defined in Guide G63 for use in liquid and gaseous oxygen systems and may not be directly applicable to the determination of the sensitivity of the materials in an end-use configuration. This test method may be used to provide batch-to batch acceptance data. This test method may provide a means for evaluating metallic materials in oxygen-enriched atmospheres also; however, Guide G94 should be consulted for preferred testing methods.1.3 Values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See also Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1011元 / 折扣价: 860 加购物车

在线阅读 收 藏

4.1 This method provides a means of evaluating and comparing basic corrosion performance of the substrate, pretreatment, or coating system, or combination thereof, after exposure to corrosive environments.1.1 This test method covers the treatment of previously painted or coated specimens for accelerated and atmospheric exposure tests and their subsequent evaluation in respect to corrosion, blistering associated with corrosion, loss of adhesion at a scribe mark, or other film failure.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

5.1 The purpose of this guide is to furnish qualified technical personnel with pertinent information for the selection of cleaning methods for cleaning materials and equipment to be used in oxygen-enriched environments. This guide furnishes qualified technical personnel with guidance in the specification of oxygen system cleanliness needs. It does not actually specify cleanliness levels.5.2 Insufficient cleanliness of components used in oxygen systems can result in the ignition of contaminants or components by a variety of mechanisms such as particle, mechanical, or pneumatic impact. These mechanisms are explained in detail in Guide G88.5.3 Adequate contamination control in oxygen systems is imperative to minimize hazards and component failures that can result from contamination. Contamination must also be minimized to ensure an acceptable product purity.5.4 Removal of contaminants from materials and components depends on system configuration, materials of construction, and type and quantity of contaminant.5.5 Examples of cleaning procedures contained herein may be followed or specified for those materials, components, and equipment indicated. The general cleaning text can be used to establish cleaning procedures for materials, components, equipment, and applications not addressed in detail. See Guide G127 for discussion of cleaning agent and procedure selection.1.1 This guide covers the selection of methods and apparatus for cleaning materials and equipment intended for service in oxygen-enriched environments. Contamination problems encountered in the use of enriched air, mixtures of oxygen with other gases, or any other oxidizing gas may be solved by the same cleaning procedures applicable to most metallic and nonmetallic materials and equipment. Cleaning examples for some specific materials, components, and equipment, and the cleaning methods for particular applications, are given in the appendixes.1.2 This guide includes levels of cleanliness used for various applications and the methods used to obtain and verify these levels.1.3 This guide applies to chemical-, solvent-, and aqueous-based processes.1.4 This guide describes nonmandatory material for choosing the required levels of cleanliness for systems exposed to oxygen or oxygen-enriched atmospheres.1.5 This guide proposes a practical range of cleanliness levels that will satisfy most system needs, but it does not deal in quantitative detail with the many conditions that might demand greater cleanliness or that might allow greater contamination levels to exist. Furthermore, it does not propose specific ways to measure or monitor these levels from among the available methods.1.6 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Federal, state, and local safety and disposal regulations concerning the particular hazardous materials, reagents, operations, and equipment being used should be reviewed by the user. The user is encouraged to obtain the Material Safety Data Sheet (MSDS) from the manufacturer for any material incorporated into a cleaning process. Specific cautions are given in Section 8.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Tests conducted in accordance with this practice are intended to induce property changes associated with use exposure to light and heat in typical office environments. These exposures are not intended to simulate the deterioration caused by localized phenomena such as handling, dirt contamination, etc.NOTE 5: Caution: Refer to practice G151 for full cautionary guidance applicable to all laboratory weathering devices. Additional information on sources of variability and on strategies for addressing variability by design and data analysis of laboratory accelerated exposure tests is found in Guide G141.5.2 Variation in results may be expected are possible between the different methods described in this practice. For example, differences in spectral distribution of the lamps used and variations in the irradiance for a single type of lamp can cause significant differences in test results. Therefore, any no reference to the use of this practice should be made unless accompanied by a report prepared in accordance with Section 12 that describes needs to include a reference to the method used.5.3 Reproducibility of test results between laboratories has been shown to be good when the stability of materials is evaluated in terms of performance ranking compared to other materials or to a control. Therefore, exposure of a similar material of known performance (a control) at the same time as the test materials is strongly recommended. It is recommended that at least three replicates of each material be exposed to allow for statistical evaluation of results.1.1 This practice covers the basic principles and operating procedures for using fluorescent light to determine color stability of plastics when materials are exposed in typical office environments where fluorescent overhead lighting and window-filtered daylight are used for illumination and where temperature and humidity conditions are in accordance with American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) recommendations for workers' comfort.1.2 This practice describes four methods where specimens are exposed to fluorescent light under controlled environmental conditions. Two of the methods use an exposure device that provides for mixing of fluorescent lamps and two of the methods use devices that comply with Practice G154.NOTE 1: Method I uses cool white fluorescent lamps and window glass filtered fluorescent UVB lamps and is the same method described in previous versions of this standard.1.3 Specimen preparation and evaluation of the results are covered in ASTM methods or specifications for specific materials. General guidance is given in Practice G151. More specific information about methods for determining the change in properties after exposure and reporting these results is described in Practice D5870.1.4 The values stated in SI units are to be regarded as the standard.1.5 Unless otherwise specified, all dimensions are nominal.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.NOTE 2: There is no known ISO equivalent to this standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏
48 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页