微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Air leakage accounts for a significant portion of the thermal space conditioning load. In addition, it affects occupant comfort and indoor air quality.5.2 In most commercial or industrial buildings, outdoor air is often introduced by design; however, air leakage is a significant addition to the designed outdoor airflow. In most residential buildings, indoor-outdoor air exchange is attributable primarily to air leakage through cracks and construction joints and is induced by pressure differences due to temperature differences, wind, operation of auxiliary fans (for example, kitchen and bathroom exhausts), and the operation of combustion equipment in the building.5.3 The fan-pressurization method is simpler than tracer gas measurements and is intended to characterize the air tightness of the building envelope. It is used to compare the relative air tightness of several similar buildings to identify the leakage sources and rates of leakage from different components of the same building envelope, and to determine the air leakage reduction for individual retrofit measures applied incrementally to an existing building, and to determine ventilation rates when combined with weather and leak location information.1.1 This test method measures air-leakage rates through a building envelope under controlled pressurization and de-pressurization.1.2 This test method is applicable to small temperature differentials and low-wind pressure differential, therefore strong winds and large indoor-outdoor temperature differentials shall be avoided.1.3 This test method is intended to quantify the air tightness of a building envelope. This test method does not measure air change rate or air leakage rate under normal weather conditions and building operation.NOTE 1: See Test Method E741 to directly measure air-change rates using the tracer gas dilution method.1.4 This test method is intended to be used for measuring the air tightness of building envelopes of single-zone buildings. For the purpose of this test method, many multi-zone buildings can be treated as single-zone buildings by opening interior doors or by inducing equal pressures in adjacent zones.1.5 Only metric SI units of measurement are used in this standard. If a value for measurement is followed by a value in other units in parentheses, the second value may be approximate. The first stated value is the requirement.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The AE examination method detects structurally significant flaws in FRP structures via test loading. The damage mechanisms that are detected in FRP include resin cracking, fiber debonding, fiber pullout, fiber breakage, delamination, and secondary bond failure.5.2 Flaws in unstressed areas will not generate detectable AE.5.3 Flaws located with AE may be examined by other methods.1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers.1.2 This practice uses simulated service loading to determine structural integrity.1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination.1.4 This practice applies to examinations of new and in-service fan blades.1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight.1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice.1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The fan pressurization procedure provides a relatively fast evaluation of the airtightness of building envelopes. In order for the accuracy of the test results to be known, the airflow rate measurement technique of the fan pressurization system must be calibrated.5.2 This test method is applicable to fan pressurization systems that are installed in an opening in the building envelope, as opposed to pressurization techniques involving the mechanical ventilation system of the building.5.3 The technique of pressurization testing of buildings puts specific requirements on the calibration of fan pressurization systems. The calibration must cover the range of fan pressure differences (approximately 12.5 Pa to 75 Pa) that is induced during pressurization tests. The calibration must also cover a range in fan airflow rates corresponding to the range in building size and airtightness that the fan pressurization system will encounter in the field.5.4 The fan pressurization system must be calibrated in both directions of airflow used to pressurize and depressurize a building if the system airflow direction is reversible. These two calibrations can be conducted using the various setups described in this test method; however some of the setups can be combined such that a single calibration facility can be used to calibrate the fan in both directions. Such a single setup may involve moving the fan pressurization system from one end of the chamber to the other, reversing the orientation of the system at the same end of the chamber, or it may not require moving the system at all.5.5 The calibration technique is applicable to the two basic types of fan pressurization systems in use, r/min doors and signal doors.5.6 For fan pressurization systems that operate in multiple ranges of airflow rate, the system must be calibrated in each range.5.7 The calibration technique is intended to provide a complete calibration of a fan pressurization system. After calibrating several systems of an identical or similar design, the fan airflow rate may be found to be independent of certain parameters such as fan pressure difference. Other simplifying relations between fan airflow rate and fan speed or fan signal may be observed. If these relations are observed, a manufacturer or other calibrator may choose to simplify the calibration procedure by reducing the number of calibration points.5.8 The use of fan pressurization systems in actual buildings introduces additional factors that may cause errors in the airflow rate measurement that are not accounted for by the calibration. These factors include operator and weather effects and interference from internal partitions and other obstructions.1.1 This test method covers the airflow measurement calibration techniques for fan pressurization systems used for measuring air leakage rates through building envelopes.1.2 This test method is applicable to systems used for air leakage measurement as described in Test Methods E779, E1827, E3158, and ANSI/RESNET/ICC 380.1.3 This test method involves the installation of the fan pressurization system in a calibration chamber. Use of the fan pressurization system in an actual building may introduce additional errors in the airflow measurement due to operator influence, interference of internal partitions and furnishings, weather effects, and other factors.1.4 The proper use of this test method requires a knowledge of the principles of airflow and pressure measurement.1.5 This standard includes two basic procedures, a preferred procedure, based on ASHRAE 51/AMCA 210, and an optional procedure based on a nonstandard airflow measurement technique, commonly used by manufacturers of fan pressurization devices, but which has not been compared with standard airflow measurement techniques.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice establishes the basic parameters for the application and control of fan-beam CT examinations. This practice is written so it can be specified on the engineering drawing, specification, or contract. It will require a detailed procedure delineating the technique or procedure requirements and shall be approved by the Cognizant Engineering Organization (CEO).5.2 The requirements in this practice shall be used when placing a CT system into NDT service and establishing a baseline of system performance measures. Monitoring the system performance over time shall be performed, including calibration procedures, performance measurements, and system maintenance in accordance with Section 9.1.1 This practice establishes the minimum requirements for computed tomography (CT) examination of test objects using fan beam systems (systems that generate one or a few CT cross sectional slices at a time). The examination may be used to nondestructively disclose physical features or anomalies within a test object by providing radiological density and geometric measurements. This practice implicitly assumes the use of penetrating radiation, specifically X-ray and γ-ray.1.2 CT is broadly applicable to any material or test object through which a beam of penetrating radiation passes. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object without the structural superposition in projection radiography.1.3 There are areas in this practice that may require agreement between the purchaser and the supplier, or specific direction from the cognizant engineering organization. These items should be addressed in the purchase order or the contract. Generally, the items are application specific or performance related, or both.1.4 Techniques and applications employed with CT are diverse. This practice is not intended to be limiting or restrictive. Refer to Guides E1441 and E1672 that provide additional information and guidance on CT fundamentals and tradeoffs in designing or purchasing a CT system, or both.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Air leakage between an air distribution system and unconditioned spaces affects the energy losses from the distribution system, the ventilation rate of the building, and the entry rate of air pollutants.5.2 The determination of infiltration energy loads and ventilation rates of residences and small commercial buildings are typically based on the assumption that the principal driving forces for infiltration and ventilation are the wind and indoor/outdoor temperature differences. This can be an inappropriate assumption for buildings that have distribution systems that pass through unconditioned spaces, because the existence of relatively modest leakage from that system has a relatively large impact on overall ventilation rates. The air leakage characteristics of these exterior distribution systems are needed to determine their ventilation, energy, and pollutant-entry implications.5.3 Air leakage through the exterior air distribution envelope may be treated in the same manner as air leakage in the building envelope as long as the system is not operating (see Test Method E779). However, when the system blower is on, the pressures across the air distribution system leaks are usually significantly larger than those driving natural infiltration. Depending on the size of the leaks, these pressures can induce much larger flows than natural infiltration. Thus, it is important to be able to isolate these leaks from building envelope leaks. The leakage of air distribution systems must be measured in the field, because it has been shown that workmanship and installation details are more important than design in determining the leakage of these systems.5.4 For codes, standards, and other compliance or quality control applications, the precision and repeatability at meeting a specified target (for example, air flow at reference pressure) is more important than air leakage flows at operating conditions. Some existing codes, standards, and voluntary programs require the use of a simpler test method (Test Method D) that does not separate supply from return leakage, leakage to inside from leakage to outside, or estimate leakage pressures at operating conditions.5.5 Test Methods A, B, and C can be used for energy use calculations and compliance and quality control applications. Test Method D is intended for use in compliance and quality control only.1.1 The test methods included in this standard are applicable to the air distribution systems in low-rise residential and commercial buildings.1.2 These test methods cover four techniques for measuring the air leakage of air distribution systems. The techniques use air flow and pressure measurements to determine the leakage characteristics.1.3 The test methods for two of the techniques also specify the auxiliary measurements needed to characterize the magnitude of the distribution system air leakage during normal operation.1.4 A test method for the total recirculating air flow induced by the system blower is included so that the air distribution system leakage can be normalized as is often required for energy calculations.1.5 The proper use of these test methods requires knowledge of the principles of air flow and pressure measurements.1.6 Three of these test methods are intended to produce a measure of the air leakage from the air distribution system to outside. The other test method measures total air leakage including air leaks to inside conditioned space.1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The test results allow the comparison of the maximum air power at the vacuum cleaner motor/fan system inlet under the conditions of this test method.1.1 This test method covers procedures for determining air performance characteristics of series universal motor/fan systems used in commercial and household upright, canister, stick, hand-held utility, combination-type vacuum cleaners, and household central vacuum cleaning systems.1.2 These tests and calculations include determination of suction, airflow, air power, maximum air power, and input power under specified operating conditions.NOTE 1: For more information on air performance characteristics, see References (1) through (2).21.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Most steep slope roofing products that have demonstrated wind resistance by this test have also performed well in use. Natural wind conditions differ with respect to intensity, duration, and turbulence; these conditions are beyond the means of this test to simulate. The results of this test do not directly correlate to wind speeds experienced in service, and no accommodation is made in this test method for building height, building exposure category, or building importance factor.5.2 Many factors influence the wind resistance of a steep slope roofing product in the field; for example, temperature, time, roof slope, contamination by dirt and debris, and fasteners, both appropriate and inappropriate, that are misaligned or misplaced, or over- or under-driven, and sealant adhesion, if used and functioning. It is beyond the scope of this test method to address all of these influences. This test method is designed to evaluate the wind resistance of products as described in the scope when representative samples are applied to test panels in accordance with the manufacturer’s instructions and conditioned as specified before testing.1.1 This test method covers the procedure for evaluating the wind resistance of many discontinuous, air permeable, steep slope roofing products that results from the product's rigidity, with or without contribution from sealant to help hold down the leading edge of the tabs, or mechanical interlocking, with or without contribution from sealant to help hold down the leading edge of the tabs, or any combination thereof. The products are applied to a test panel in accordance with the manufacturer’s instructions and tested at a 2:12 (17 %) slope, or at the lowest slope permitted by those instructions.1.2 This method evaluates wind resistance using a fan-induced procedure, delivering a stream of air across the exposed surface of the test specimens. This method does not measure structural performance, and does not provide a measure of uplift resistance. Consequently, this method is not applicable to continuous, non-permeable roof systems or coverings (such as membranes or mechanically seamed metal roof panels).1.3 This test method was formerly titled “Wind Resistance of Asphalt Shingles (Fan-Induced Method)” but was revised to acknowledge that the method is applicable to many other steep slope roofing products and has been used to evaluate the wind resistance of those products for many years by several testing and certification laboratories. Steep slope roofing products that fall under the scope of this test method, in addition to asphalt shingles, are polymer-based shingles, fiber-cement shingles, concrete tiles, clay tiles, metal shingles, and photovoltaic shingles.1.4 This test method is limited to steep slope roofing product applied with a maximum exposure of 410 mm [16 in.].1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
7 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页