微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The BPI is designed to yield quantitative information concerning neutron beam and image system parameters that contribute to film exposure and thereby affect overall image quality. In addition, the BPI can be used to verify the day-to-day consistency of the neutron radiographic quality. Gadolinium conversion screens and single-emulsion silver-halide films, exposed together in the neutron imaging beam, were used in the development and testing of the BPI. Use of alternative detection systems may produce densitometric readings that are not valid for the equations used in Section 9.5.2 The only truly valid sensitivity indicator is a reference standard part. A reference standard part is a material or component that is the same as the object being neutron radiographed except with a known standard discontinuity, inclusion, omission, or flaw. The sensitivity indicators were designed to substitute for the reference standard and provide qualitative information on hole and gap sensitivity.5.3 The number of areas or objects to be radiographed and the film acceptance standard used should be specified in the contract, purchase order, specification, or drawings.1.1 This test method covers the use of an Image Quality Indicator (IQI) system to determine the relative2 quality of radiographic images produced by direct, thermal neutron radiographic examination. The requirements expressed in this test method are not intended to control the quality level of materials and components.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 In-vitro osteoblast differentiation assays are one approach to screen progenitor stem cells for their capability to become osteoblasts. The extent of calcium deposits or mineralized matrix that form in vitro may be an indicator of differentiation to a functional osteoblast; however, expression of osteogenic genes or proteins is another important measurement to use in conjunction with this assay to determine the presence of an osteoblast.5.2 This practice provides a technique for staining, imaging, and quantifying the fluorescence intensity and area related to the mineralization in living cell cultures using the non-toxic calcium-chelating dye, XO. The positively stained area of mineralized deposits in cell cultures is an indirect measure of calcium content. It is important to measure the intensity to ensure that the images have not been underexposed or overexposed. Intensity and area do not correlate directly to calcium content.5.3 XO enables the monitoring of calcium deposits repeatedly throughout the life of the culture without detriment to the culture. There is no interference on subsequent measurements of the mineralized area due to dye accumulation from repeated application (1).3 Calcium deposits that have been previously stained may appear brighter, but this does not impact the area measurement. Calcein dyes may also be used for this purpose (1) but require a different procedure for analysis than XO (that is, concentration and filter sets) and are thus not included here. Alizarin Red and Von Kossa are not suitable for use with this procedure on living cultures since there is no documentation supporting their repeated use in living cultures without deleterious effects.5.4 The practice may be applied to cultures of any cells capable of producing calcium deposits. It may also be used to document the absence of mineral in cultures where the goal is to avoid mineralization.5.5 During osteoblast differentiation assays, osteogenic supplements are provided to induce or assist with the differentiation process. If osteogenic supplements are used in excess, a calcium deposit that is not osteoblast-mediated and is referred to as dystrophic, pathologic, or artifactual may occur in the cell cultures (2). For example, when higher concentrations of beta-glycerophosphate are used in the medium to function as a substrate for the enzyme alkaline phosphatase secreted by the cells, there is a marked increase in free phosphate, which then precipitates with Ca++ ions in the media to form calcium phosphate crystals independently of the differentiation status of the progenitor cell. Alkaline phosphatase production is associated with progenitor cell differentiation, and is frequently stimulated by dexamethasone addition to the medium, which enhances the formation of calcium deposits. These kinds of calcium/mineral deposits are thus considered dystrophic, pathologic, or artifactual because they were not initiated by a mature osteoblast. The measurement obtained by using this practice may thus result in a potentially false interpretation of the differentiation status of osteoprogenitor cells if used in isolation without gene or protein expression data (3, 4).5.6 Due to the possibility of artifactual calcium deposits during mineralization assays (2-4), gene expression analysis or protein analysis techniques demonstrating the RNA message or the presence of osteocalcin and bone sialoprotein are recommended for use in conjunction with the calcium deposit quantification procedure described here in order to confirm the presence of mature osteoblasts that are in the process of secreting a mineralizing matrix.5.7 The deposition of a mineralized substance in the culture dish does not confirm that the cells being cultured are capable of forming bone in vivo.5.8 The pattern of mineralized matrix deposition in the culture dish will vary, depending on the number of times the cells have been passaged (that is, first passage primary cells versus cells that have been passaged several times, including cell lines). First passage primary cells typically form relatively large nodules of osteoprogenitor cells that differentiate and mineralize, while cells that have been passaged many times lead to the formation of diffuse, dispersed mineral throughout the culture dish. This practice is independent of the pattern of mineralization and can be used to analyze mineralized matrix in both primary cells and cell lines.5.9 Since some cells proliferate slower than others and since some of the cell culture surfaces being tested may affect proliferation of the cells, the data can be normalized to total cell number. Since reduced proliferation typically reduces mineralization, normalization to cell number typically does not influence the outcomes. Total DNA content can be determined as an indirect measure of cell number. There are several commercially available kits for this purpose. Since DNA analysis is a destructive, toxic assay, additional cell cultures must be prepared if this assay is used.1.1 This practice defines a method for the estimation of calcium content at multiple time points in living cell cultures that have been cultured under conditions known to promote mineralization. The practice involves applying a fluorescent calcium-chelating dye that binds to the calcium phosphate mineral crystals present in the live cultures followed by image analysis of fluorescence microscopy images of the stained cell cultures. Quantification of the positively stained areas provides a relative measure of the calcium content in the cell culture plate. A precise correlation between the image analysis parameters and calcium content is beyond the scope of this practice.1.2 Calcium deposition in a secreted matrix is one of several features that characterize bone formation (in vitro and in vivo), and is therefore a parameter that may indicate bone formation and osteoblast function (that is, osteoblastic differentiation). Calcium deposition may, however, be unrelated to osteoblast differentiation status if extensive cell death occurs in the cell cultures or if high amounts of osteogenic medium components that lead to artifactual calcium-based precipitates are used. Distinguishing between calcium deposition associated with osteoblast-produced mineralized matrix and that from pathological or artifactual deposition requires additional structural and chemical characterization of the mineralized matrix and biological characterization of the cell that is beyond the scope of this practice.1.3 The parameters obtained by image analysis are expressed in relative fluorescence units or area percentage (area%), for example, fraction of coverage of the area analyzed.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The roundness of glass beads has a significant influence on the retroreflective efficiency of a pavement marking system.4.2 The guide is for the characterization of the roundness of glass beads for the purpose of compliance testing against standard specification for glass beads in pavement marking applications.4.3 While there are potential industrial applications for this guide beyond the measurement of roundness of glass beads for pavement markings, those are beyond the scope of this standard.1.1 This guide covers the determination of the roundness of glass spheres used in pavement marking systems using a flowing stream digital analyzer. Typical gradations for pavement marking systems are defined in ranges from Type 0 through 5 in AASHTO M247.1.2 This guide provides for the presentation of roundness data in a variety of formats to the requirement of the agency pavement marking material specification. For most specifications the standard format is to present the roundness data as Percent True Spheres relative to a series of standard ASTM sieve sizes.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

5.1 This test method provides a quantified measure of the image artifact produced under a standard set of scanning conditions.5.2 This test method applies only to passive implants that have been established to be MR-Safe or MR-Conditional.1.1 This test method characterizes the distortion and signal loss artifacts produced in a magnetic resonance (MR) image by a passive implant (implant that functions without the supply of electrical or external power). Anything not established to be MR-Safe or MR-Conditional is excluded.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This practice covers the design, material grouping classification, and manufacture of hole-type image quality indicators (IQI) used to indicate the quality of X-ray and gamma-ray radiologic images.1.1 This practice2 covers the design, material grouping classification, and manufacture of hole-type image quality indicators (IQI) used to indicate the quality of radiologic images.1.2 This practice is applicable to X-ray and gamma-ray radiology.1.3 The values stated in inch-pound units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Each Facility Rating Scale (see Figs. 1-7) in this classification provides a means to estimate the level of serviceability of a building or facility for one topic of serviceability and to compare that level against the level of any other building or facility.4.2 This classification can be used for comparing how well different buildings or facilities meet a particular requirement for serviceability. It is applicable despite differences such as location, structure, mechanical systems, age, and building shape.4.3 This classification can be used to estimate the amount of variance of serviceability from target or from requirement for a single office facility or within a group of office facilities.4.4 This classification can be used to estimate the following:4.4.1 Serviceability of an existing facility for uses other than its present use.4.4.2 Serviceability (potential) of a facility that has been planned but not yet built.4.4.3 Serviceability (potential) of a facility for which remodeling has been planned.4.5 Use of this classification does not result in building evaluation or diagnosis. Building evaluation or diagnosis generally requires a special expertise in building engineering or technology and the use of instruments, tools, or measurements.4.6 This classification applies only to facilities that are building constructions, or parts thereof. (While this classification may be useful in rating the serviceability of facilities that are not building constructions, such facilities are outside the scope of this classification.)4.7 This classification is not intended for, and is not suitable for, use for regulatory purposes, nor for fire hazard assessment nor for fire risk assessment.1.1 This classification covers pairs of scales for classifying an aspect of the serviceability of an office facility, that is, the capability of an office facility to meet certain possible requirements for image to the public and occupants.1.2 Within that aspect of serviceability, each pair of scales, shown in Figs. 1-7, are for classifying one topic of serviceability. Each paragraph in an Occupant Requirement Scale (see Figs. 1-7) summarizes one level of serviceability on that topic, which occupants might require. The matching entry in the Facility Rating Scale (see Figs. 1-7) is a translation of the requirement into a description of certain features of a facility which, taken in combination, indicate that the facility is likely to meet that level of required serviceability.FIG. 1 Scale A.11.1 for Exterior AppearanceFIG. 1 Scale A.11.1 for Exterior Appearance (continued)FIG. 2 Scale A.11.2 for Public Lobby of BuildingFIG. 2 Scale A.11.2 for Public Lobby of Building (continued)FIG. 3 Scale A.11.3 for Public Spaces Within the BuildingFIG. 3 Scale A.11.3 for Public Spaces Within the Building (continued)FIG. 4 Scale A.11.4 for Appearance and Spaciousness of Office SpacesFIG. 5 Scale A.11.5 for Finishes and Materials in Office SpacesFIG. 6 Scale A.11.6 for Identity Outside the BuildingFIG. 6 Scale A.11.6 for Identity Outside the Building (continued)FIG. 7 Scale A.11.7 for Neighborhood and SiteFIG. 7 Scale A.11.7 for Neighborhood and Site (continued)1.3 The entries in the Facility Rating Scale (see Figs. 1-7) are indicative and not comprehensive. They are for quick scanning to estimate approximately, quickly, and economically, how well an office facility is likely to meet the needs of one or another type of occupant group over time. The entries are not for measuring, knowing, or evaluating how an office facility is performing.1.4 This classification can be used to estimate the level of serviceability of an existing facility. It can also be used to estimate the serviceability of a facility that has been planned but not yet built, such as one for which single-line drawings and outline specifications have been prepared.1.5 This classification indicates what would cause a facility to be rated at a certain level of serviceability but does not state how to conduct a serviceability rating nor how to assign a serviceability score. That information is found in Practice E1334. The scales in this classification are complimentary to and compatible with Practice E1334. Each requires the other.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The gauge is intended to provide a means for measuring image or detector unsharpness and basic spatial image or detector resolution as independently as practicable from the imaging system and contrast sensitivity limitations. When the duplex plate gauge is positioned directly on the film or the digital detector instead on the test object, then the determined image unsharpness UIm corresponds to the inherent film or detector unsharpness (Udetector) and the determined basic spatial image resolution SRbimage corresponds to the basic spatial detector resolution SRbdetector. SRbimage provides a value which depends on the combined effect of detector unsharpness and geometric unsharpness.5.2 Basis of Application: 5.2.1 The following items are subject to contractual agreement between the parties using or referencing this standard.5.2.1.1 Personnel Qualification—Personnel performing examinations to this practice shall be qualified in accordance with NAS410, EN 4179, ANSI/ASNT CP 189, ISO 9712, or SNT-TC-1A and certified by the employer or certifying agency as applicable. Other equivalent qualification documents may be used when specified on the contract or purchase order. The applicable revision shall be the latest unless otherwise specified in the contractual agreement between parties.5.2.1.2 If specified in the contractual agreement, NDT agencies shall be qualified and evaluated as described in Specification E543. The applicable edition of Specification E543 shall be specified in the contract.1.1 This practice covers the design and basic use of a gauge used to determine the image unsharpness and the basic spatial resolution of film radiographs or of digital images taken with CR imaging plates, digital detector arrays (DDA), or radioscopic systems (for example, with X-ray image intensifiers) for applications with Se-75, Ir-192, Co-60 and high energy sources with tube potentials ≥ 300 kV. The IQI may be used at lower tube potentials too, if the expected unsharpness is > 200 µm (SRbimage or SRbdetector > 100 µm). For the measurement of lower unsharpness values, the usage of the gauge described in Practice E2002 is recommended.1.2 This practice is applicable to radiographic and radioscopic imaging systems utilizing X-ray and gamma ray radiation sources.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The gauge described can be used effectively if the duplex wire IQI of Practice E2002 does not provide sufficient contrast resolution.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These test methods cover procedures for determining the mean grain size, and the distribution of grain intercept lengths or grain areas, for polycrystalline metals and nonmetallic materials with equiaxed or deformed grain shapes, with uniform or duplex grain size distributions, and for single phase or multiphase grain structures.5.2 The measurements are performed using semiautomatic digitizing tablet image analyzers or automatic image analyzers. These devices relieve much of the tedium associated with manual measurements, thus permitting collection of a larger amount of data and more extensive sampling which will produce better statistical definition of the grain size than by manual methods.5.3 The precision and relative accuracy of the test results depend on the representativeness of the specimen or specimens, quality of specimen preparation, clarity of the grain boundaries (etch technique and etchant used), the number of grains measured or the measurement area, errors in detecting grain boundaries or grain interiors, errors due to detecting other features (carbides, inclusions, twin boundaries, and so forth), the representativeness of the fields measured, and programming errors.5.4 Results from these test methods may be used to qualify material for shipment in accordance with guidelines agreed upon between purchaser and manufacturer, to compare different manufacturing processes or process variations, or to provide data for structure-property-behavior studies.1.1 These test methods are used to determine grain size from measurements of grain intercept lengths, intercept counts, intersection counts, grain boundary length, and grain areas.1.2 These measurements are made with a semiautomatic digitizing tablet or by automatic image analysis using an image of the grain structure produced by a microscope.1.3 These test methods are applicable to any type of grain structure or grain size distribution as long as the grain boundaries can be clearly delineated by etching and subsequent image processing, if necessary.1.4 These test methods are applicable to measurement of other grain-like microstructures, such as cell structures.1.5 This standard deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability or fitness for purpose of the materials tested.1.6 The sections appear in the following order:Section Section  1Referenced Documents  2Terminology  3 Definitions  3.1 Definitions of Terms Specific to This Standard  3.2 Symbols  3.3Summary of Test Method  4  5Interferences  6Apparatus  7Sampling  8Test Specimens  9Specimen Preparation 10Calibration 11Procedure:   Semiautomatic Digitizing Tablet 12 Intercept Lengths 12.3 Intercept and Intersection Counts 12.4 Grain Counts 12.5 Grain Areas 12.6 ALA Grain Size 12.6.1 Two-Phase Grain Structures 12.7Procedure:   Automatic Image Analysis 13 Grain Boundary Length 13.5 Intersection Counts 13.6 Mean Chord (Intercept) Length/Field 13.7.2 Individual Chord (Intercept) Lengths 13.7.4 Grain Counts 13.8 Mean Grain Area/Field 13.9 Individual Grain Areas 13.9.4 ALA Grain Size 13.9.8 Two-Phase Grain Structures 13.10Calculation of Results 14Test Report 15Precision and Bias 16Grain Size of Non-Equiaxed Grain Structure Specimens Annex A1Examples of Proper and Improper Grain Boundary Delineation Annex A21.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
ASTM E2825-21 Standard Guide for Forensic Digital Image Processing Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Processed images are used for many purposes by the forensic science community. They can yield information not readily apparent in the original image, which can assist an expert in drawing a conclusion that might not otherwise be reached.5.2 This guide addresses image processing and related legal considerations in the following three categories:5.2.1 Image enhancement,5.2.2 Image restoration, and5.2.3 Image compression.1.1 This guide provides digital image processing guidelines to ensure the production of quality forensic imagery for use as evidence in a court of law.1.2 This guide briefly describes advantages, disadvantages, and potential limitations of each major process.1.3 This standard cannot replace knowledge, skills, or abilities acquired through education, training, and experience, and is to be used in conjunction with professional judgment by individuals with such discipline-specific knowledge, skills, and abilities.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E3148-18(2023) Standard Guide for Postmortem Facial Image Capture Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The protocols that exist for photographing a decedent’s face at autopsy for identification purposes (for example, NAME Forensic Autopsy Performance Standards) do not always result in the capture of facial images that can be used for automated FR searches or manual facial comparisons. It is not always feasible to collect fingerprints from decedents (for example, in disaster situations or when a decedent is in a state of advanced decomposition), and radiograph (medical or dental) comparison requires at least a presumptive identification of remains so appropriate comparative antemortem radiographs can be obtained to confirm the identification. If the decedent’s DNA or appropriate family reference DNA profiles are not already stored within a DNA repository (for example, the FBI’s CODIS), a DNA association will also require the presumptive identification of a decedent to ensure that appropriate samples are collected for comparison/association.5.2 It is advisable to follow the guidelines presented in this guide even when not all facial components are present as even incomplete facial images can assist automated FR and manual facial comparison processes, especially through more accurate recording of minute facial details.5.3 For the purpose of facial image capture, there are various perimortem or postmortem conditions or both that can degrade the usability of any facial images captured:5.3.1 Presence of trauma (for example, entry/exit wounds, lacerations, bruising, missing components, etc.),5.3.2 Obscuring matter (for example, blood, fluids, dirt, debris, hair, clothing accessories, and so forth), and5.3.3 Decomposition and other postmortem changes (for example, bloating, mummification, skeletonization, evidence of insect or scavenger activity, etc.).5.4 Before any attempt is made to clean or alter the decedent for facial image capture, nationally accepted standards or agency protocols or both should be followed so the alterations do not affect forensic evidence collection, documentation, or chain of custody.1.1 The purpose of this document is to provide guidelines for capturing postmortem facial images of human remains in controlled (for example, morgue) and semi-controlled (for example, field) settings to facilitate automated facial recognition (FR) searches or manual facial comparisons that could contribute to forensic investigations.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This standard provides a practice for RIQR evaluations of film and non-film imaging systems when exposed through an absorber material. Three alternate data evaluation methods are provided in Section 9. Determining RIQR requires the comparison of at least two radiographs or radiographic processes whereby the relative degree of image quality difference may be determined using the EPS plaque arrangement of Fig. 1 as a relative image quality indicator (RIQI). In conjunction with the RIQI, a specified radiographic technique or method must be established and carefully controlled for each radiographic process. This practice is designed to allow the determination of subtle changes in EPS that may arise to radiographic imaging system performance levels resultant from process improvements/changes or change of equipment attributes. This practice does not address relative unsharpness of a radiographic imaging system as provided in Practice E2002. The common element with any relative comparison is the use of the same RIQI arrangement for both processes under evaluation.4.2 In addition to the standard evaluation method described in Section 9, there may be other techniques/methods in which the basic RIQR arrangement of Fig. 1 might be utilized to perform specialized assessments of relative image quality performance. For example, other radiographic variables can be altered to facilitate evaluations provided these differences are known and documented for both processes. Where multiple radiographic process variables are evaluated, it is incumbent upon the user of this practice to control those normal process attributes to the degree suitable for the application. Specialized RIQR techniques may also be useful with micro focus X-ray, isotope sources of radiation or with the use of non-film radiographic imaging systems. RIQR may also be useful in evaluating imaging systems with alternate materials (RIQI and base plate) such as plastic, copper-nickel, or aluminum. When using any of these specialized applications, the specific method or techniques used shall be as specified and approved by the cognizant engineering organization.1.1 This standard covers a practice whereby industrial radiographic imaging systems or techniques may be comparatively assessed using the concept of relative image quality response (RIQR). Changes within a radiographic technique such as film/detector types, distances, or filtering/collimation can be comparatively assessed using this standard. The RIQR method presented within this practice is based upon the use of equivalent penetrameter sensitivity (EPS) described within Practice E1025 and subsection 5.4 of this practice. Fig. 1 illustrates a relative image quality indicator (RIQI) that has four different plaque thicknesses (0.38 mm, 0.25 mm, 0.20 mm, and 0.13 mm (0.015 in., 0.010 in., 0.008 in., and 0.005 in.)) sequentially positioned (from top to bottom) on an absorber plate of a specified material and thickness. The four plaques contain a total of 14 different arrays of penetrameter-type hole sizes designed to render varied conditions of threshold visibility when exposed to the appropriate radiation. Each “EPS” array consists of 30 identical holes; thus, providing the user with a quantity of threshold sensitivity levels suitable for relative image qualitative response comparisons. There are two standard materials (steel and plastic) specified herein for the RIQI and absorber. For special applications the user may design a non-standard RIQI-absorber configuration; however the RIQI configuration shall be controlled by a drawing similar to Fig. 1. Use of a non-standard RIQI-absorber configuration shall be described in the user’s written technique and approved by the CEO.1.2 This practice is not intended to qualify the performance of a specific radiographic technique nor for assurance that a radiographic technique will detect specific discontinuities in a specimen undergoing radiographic examination.1.3 This practice is not intended to be used to classify or derive performance classification categories for radiographic imaging systems. For example, performance classifications of radiographic film systems may be found within Test Method E1815, and manufacturer characterization of computed radiography (CR) systems may be found in Practice E2446. However, the RIQI and absorber described in this practice are used by Practice E2446 for manufacturer characterization of computed radiography (CR) systems and by Practice E2445 to evaluate performance and to monitor long term stability of CR systems.1.4 These tests are for applications below 4 MeV. When a gamma source or other high energy source is used, these tests may still be used to characterize the system, but may need a modification of the absorber thickness to adjust the available RIQR range as agreed between the user and cognizant engineering organization (CEO). For high-energy X-ray applications (4 MV to 25 MV), Test Method E1735 provides a similar RIQR standard practice.1.5 The values stated in SI are to be regarded as the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Morphological analysis used for facial comparison should utilize consistent terminology and methodology. This guide provides a standard set of facial components, characteristics, and descriptors to be used as a framework in conjunction with a systematic method of analysis for facial image comparison.4.2 The order of the facial components in this set is presented from the top of the face to the bottom, not in order of importance or priority.4.3 Within this guide, the term “face” generally refers to the face, head, and neck inclusively unless specified otherwise.4.4 There are several instances in this guide in which the term “distance” or “approximate distance” is used. When this term is used in this guide, it does not mean to imply that the precise value of this dimension shall be determined, but rather the relative size of this dimension compared to the overall width or height of the face, if not otherwise specified. In this guide, it is recommended that photoanthropometry not be used at all because of its limitations.1.1 This guide defines a set of facial components, characteristics, and descriptors to be considered during a morphological facial comparison (see FISWG Best Practices for Facial Image Comparison Feature List for Morphological Analysis).1.2 This set of facial components, characteristics, and descriptors describes the facial features that may be visible and comparable between images.1.3 This guide defines a standard set of facial components, characteristics, and descriptors that should be used for facial comparison.1.4 This guide does not define the comparison process itself, just the feature set to be used during such comparisons.1.5 This guide does not define a classification system to constrain how those descriptors shall be articulated as applied to samples.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
34 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页