微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

4.1 It is very difficult to exclude sample contamination by ambient air during the process of sampling. The levels of atmospheric contamination caused by poor sampling methods are often equal to or larger than the levels of the gaseous impurities present in the chlorine. This results in markedly elevated levels of detected impurities. As specifications become tighter, it becomes more important to measure the gaseous impurity levels in liquid chlorine correctly.4.2 Additional problems are experienced in the sampling of liquefied gases for the gaseous impurities. The gaseous impurities reach an equilibrium between the liquid phase and vapor phase in a sample bomb. The quantity of gases measured in any particular sample containing both liquid and vapor will be a function of the amount of vapor space in the sample bomb. This test method avoids the presence of liquid in the sample bomb.1.1 This test method covers sampling and analysis of liquid chlorine for the determination of oxygen (200 to 400 μg/g), nitrogen (400 to 800 μg/g), and carbon dioxide (800 to 1000 ppm) content at levels normally seen in liquid chlorine. Hydrogen and carbon monoxide concentrations in liquid chlorine are typically at or below the detection limit of this test method.NOTE 1: The minimum detection limit of hydrogen using a 1 cm3 gas sample and argon carrier gas is 100 to 200 μg/g.2 The detection limit for the other components is significantly lower.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is of significance in making a final determination of the acceptability of fine aggregates with respect to the requirements of Specification C33/C33M concerning organic impurities.5.2 This test method is applicable to those samples which, when tested in accordance with Test MethodC40/C40M, have produced a supernatant liquid with a color darker than the standard listed in Table 1 of C40/C40M (Organic plate No. 3, Gardner Color Standard No. 14, Circular Disk No. 14 or prepared color solution).5.3 Many specifications provide for the acceptance of fine aggregate producing a darker color in the Test Method C40/C40M test, if testing by this test method indicates the strength of the mortar cubes prepared with the unwashed fine aggregate is comparable to the strength of mortar cubes made with the washed fine aggregate.1.1 This test method covers the determination of the effect on mortar strength of the organic impurities in fine aggregate, whose presence is indicated using Test Method C40/C40M. Comparison is made between compressive strengths of mortar made with washed and unwashed fine aggregate.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Some values have only SI units because the inch-pound equivalents are not used in the practice.NOTE 1: Sieve size is identified by its standard designation in Specification E11. The alternative designation given in parentheses is for information only and does not represent a different standard sieve size1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.(Warning—Fresh hydraulic cementitous mixtures are caustic and may cause chemical burns to exposed skin and tissue upon prolonged exposure.)21.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method may be run together with Test Method C1432 to analyze for trace impurities in Pu metal. Using the technique described in this test method and the technique described in Test Method C1432 will provide the analyst with a more thorough verification of the impurity concentrations contained in the Pu metal sample. In addition, Test Method C1432 can be used to determine impurity concentrations for analytes such as Ca, Fe, Na, and Si, which have not been determined using this test method.5.2 This test method can be used on Pu matrices in nitrate solutions.5.3 This test method has been validated for use on materials that meet the specifications described in Specification C757 and Test Methods C758 and C759.5.4 This test method has been validated for all elements listed in Table 1.(A) Without outlying value.1.1 This test method covers the determination of trace elements in plutonium (Pu) materials such as Pu metal, Pu oxides, and Pu/uranium (U) mixed oxides. The Pu sample is dissolved in acid, and the concentration of the trace impurities are determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).1.2 This test method is specific for the determination of trace impurities where the samples are dissolved and the oxidation state is adjusted to the Pu(IV) and, if applicable, the U(VI) state. It may be applied to other matrices; however, it is the responsibility of the user to evaluate the performance of other matrices.1.3 The use of a quadrupole ICP-MS or a high resolution ICP-MS (HR-ICP-MS) can be employed in all applications relevant to this test method. HR-ICP-MS is a better option in many cases since it can reduce or potentially eliminate interferences encountered in the following complex sample matrices.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of major organic impurities in refined phenol manufactured by the cumene (isopropylbenzene) process. Two test methods are employed to determine the stated major impurities. 1.2 Test Method A determines the concentration of major impurities such as mesityl oxide, cumene, [alpha]-methylstyrene, 2-methylbenzofuran, acetophenone, and dimethylbenzyl alcohol. 1.3 Test Method B determines the hydroxyacetone content. 1.4 The following applies to all specified limits in this standard: for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off "to the nearest unit" in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29. 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended for application in the semiconductor industry for evaluating the purity of materials (for example, sputtering targets, evaporation sources) used in thin film metallization processes. This test method may be useful in additional applications, not envisioned by the responsible technical committee, as agreed upon between the parties concerned.5.2 This test method is intended for use by GDMS analysts in various laboratories for unifying the protocol and parameters for determining trace impurities in pure titanium. The objective is to improve laboratory to laboratory agreement of analysis data. This test method is also directed to the users of GDMS analyses as an aid to understanding the determination method, and the significance and reliability of reported GDMS data.5.3 For most metallic species the detection limit for routine analysis is on the order of 0.01 weight ppm. With special precautions detection limits to sub-ppb levels are possible.5.4 This test method may be used as a referee method for producers and users of electronic-grade titanium materials.1.1 This test method covers the determination of concentrations of trace metallic impurities in high purity titanium.1.2 This test method pertains to analysis by magnetic-sector glow discharge mass spectrometer (GDMS).1.3 The titanium matrix must be 99.9 weight % (3N-grade) pure, or purer, with respect to metallic impurities. There must be no major alloy constituent, for example, aluminum or iron, greater than 1000 weight ppm in concentration.1.4 This test method does not include all the information needed to complete GDMS analyses. Sophisticated computer-controlled laboratory equipment skillfully used by an experienced operator is required to achieve the required sensitivity. This test method does cover the particular factors (for example, specimen preparation, setting of relative sensitivity factors, determination of sensitivity limits, etc.) known by the responsible technical committee to effect the reliability of high purity titanium analyses.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The multidimensional approach permits all of the trace impurities to be well separated from the main vinyl chloride peak, thereby improving quantitative accuracy over established packed column methods.5.2 The minimum detection limit (MDL) for all components of interest has been shown to be well below 500 ppb for this test method.1.1 This is a general-purpose capillary-based test method for the determination of trace level impurities in high-purity vinyl chloride. This test method uses serially coupled capillary PLOT columns in conjunction with the multidimensional techniques of column switching and cryogenic trapping to permit the complete separation of the 11 key vinyl chloride impurities in a single 25-min run.NOTE 1: There is no known ISO equivalent to this standard.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 8.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence and content of various impurities in graphite are major considerations in determining the suitability of graphite for various applications. This test method provides an alternative means of determining the content of trace impurities in a graphite sample which has considerable advantages compared to classical wet-chemical analysis methods.5.2 The test method provides a standard procedure to measure impurities in graphite and to assure required graphite specifications.1.1 This test method covers the measurement of mass fractions of the elements silver (Ag), aluminum (Al), arsenic (As), boron (B), barium (Ba), berylium (Be), bismuth (Bi), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulfur (S), antimony (Sb), silicon (Si), tin (Sn), strontium (Sr), titanium (Ti), vanadium (V), tungsten (W), yitrium (Y), zinc (Zn), and zirconium (Zr) in graphite.1.2 Provided that an appropriate validation procedure is carried out, this test method is also applicable to other carbon materials such as coal, coke, carbon black, graphite-felt, graphite-foil, graphite-foam, and fiber reinforced carbon-carbon composites.1.3 This test method is applicable to element contents from approximately 0.0001 mg/kg to 1000 mg/kg (0.1 ppmw to 1000 ppmw), depending on element, wavelength, measurement parameters, and sample mass.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method can be used on plutonium matrices in nitrate solutions.5.2 This test method has been validated for all elements listed in Test Methods C757 except sulfur (S) and tantalum (Ta).5.3 This test method has been validated for all of the cation elements measured in Table 1. Phosphorus (P) requires a vacuum or an inert gas purged optical path instrument.1.1 This test method covers the determination of 25 elements in plutonium (Pu) materials. The Pu is dissolved in acid, the Pu matrix is separated from the target impurities by an ion exchange separation, and the concentrations of the impurities are determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).1.2 This test method is specific for the determination of impurities in 8 M HNO3 solutions. Impurities in other plutonium materials, including plutonium oxide samples, may be determined if they are appropriately dissolved (see Practice C1168) and converted to 8 M HNO3 solutions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions that are provided for information only and are not considered standard. Additionally, the non-SI units of molarity and centimeters of mercury are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 9 on Hazards.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D2186-05(2009) Standard Test Methods for Deposit-Forming Impurities in Steam (Withdrawn 2014) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

Limiting the concentration of deposit-forming impurities in steam is of significance to protect both steam generators and steam turbines from damage or degradation of performance, or both. Steam entering superheaters and reheaters of steam generators always contains some impurities. If the concentration of impurities is sufficiently low, the impurities are dissolved in superheated steam and are carried out of the steam generator. However, if the steam contains a sufficient amount of any substance to exceed its solubility limit in steam, the substance is likely to form a deposit on the heat-transfer surface. Because heat transfer in superheaters and reheaters in fossil-fueled steam generators is controlled principally by the low heat-transfer coefficient on the gas side, the formation of steam-side deposits will have little effect on the overall heat-transfer rate. However, steam-side deposits will increase the operating temperature of the heat-transfer surface. Such temperature increases can lead to swelling and ultimately to rupture of the tubing. Also, aggressive materials can concentrate under solid deposits of porous materials, such as magnetite (Fe3O4), and can cause serious corrosion of the tubing. As steam flows through turbines, its temperature and pressure decrease rapidly. Because the ability of steam to dissolve impurities decreases with decreasing temperature and pressure, impurities in steam may exceed their solubility limit and form deposits on the turbine. Such deposits reduce steam flow area, particularly in the high-pressure portion of the turbine where flow passages are small, and the roughness of deposits and their effect on blade contours result in losses of turbine efficiency. All of these effects lead to reduction of the plant maximum capacity, which appreciably reduces the financial return on the capital investment in the power plant. Furthermore, aggressive materials, such as sodium hydroxide (NaOH) and sodium chloride (NaCl), may condense and deposit on turbine surfaces. Such deposits occasionally contribute to failure due to cracking of highly stressed turbine blades and rotors. Repairs and outages are extremely costly. By monitoring the concentration of deposit-forming impurities in steam, a power plant operator can take steps necessary to limit the impurities to tolerable concentrations and thus minimize or eliminate losses due to excessive deposits.1.1 These test methods cover the determination of the amount of deposit-forming impurities in steam. Determinations are made on condensed steam samples in all test methods. Test Methods A, B, and C give a measure of the amount of total deposit-forming material present; Test Method D deals with special constituents that may be present. Special precautions and equipment, calculation procedures, and ranges of applicability are described. The following test methods are included: Sections Test Method A (Gravimetric or Evaporative) 6 to 12 Test Method B (Electrical Conductivity)13 to 19 Test Method C (Sodium Tracer)20 to 26 Test Method D (Silica and Metals)27 to 30 1.2 Test Method A is applicable for determining total dissolved and suspended solids in concentrations normally not less than 0.4 mg/L (ppm). It is applicable only to long-time steady-state conditions and is not applicable for transients. 1.3 Test Method B will measure minimum impurity concentrations varying from 3 mg/L (ppm) down to at least 0.005 mg/L (ppm), depending on the means for removing dissolved gases from the steam condensate. The means for removing dissolved gases also affects the storage capacity of steam condensate in the system and, thus, affects the response of the system to transients. 1.4 Because of the high sensitivity of methods for measuring sodium in steam condensate, Test Method C provides the most sensitive measure of impurity content for samples in which sodium is an appreciable percentage of the impurities present. Concentrations as low as 4.0 μg/L (ppb) can be detected by inductively coupled plasma atomic emission spectroscopy, 0.2 μg/L (ppb) by atomic absorption spectrophotometry, 0.1 μg/L (ppb) by graphite furnace atomic absorption spectroscopy, and as low as 0.5 μg/L (ppb) by sodium ion electrode. The apparatus can be designed with low volume, and, therefore, Test Method C is the most responsive to transient conditions. 1.5 Test Method D covers the determination of silica and metals in steam, which are not included in Test Methods B and C and are not individually determined using Test Method A. 1.6 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 6.1 The gravimetric test method is recommended for applications for which an average value of impurities over a period of several days or weeks is desired. It is particularly useful for samples in which a large percentage of the impurities are insoluble, do not contain sodium, or do not contribute appreciably to the electrical conductivity of the samples, because the other methods are not satisfactory for these conditions. Examples of such impurities are metals and metal oxides. It is not applicable when short-time trends are of interest or when immediate results are desired. The test method is useful for the determination of concentrations of impurities of 0.25 mg/L (ppm) or greater when a previously collected sample is used and for impurities concentrations of 0.1 mg/L (ppm) or greater when continuous sampling is used. Concentrations less than 0.1 mg/L (ppm) can be determined if a continuously flowing sample is evaporated for an extremely long period of time. 13.1 Ion-Exchange Degasser—An ion-exchange degasser consists of an ion-exchange resin that exchanges hydrogen ions for all cations in the sample, thereby eliminating all basic dissolved gases, including volatile amines. By converting mineral salts to their acid forms, it also increases the specific conductance of the impurities. As a result, the linear relationship between conductivity and impurity content is extended to a much lower level, depending on the carbon dioxide content. The test method is very useful for measuring low concentrations of impurities, such as condenser cooling water leakage, in steam condensate, and it is especially useful, for indicating small or intermittent changes in impurity content from some normal value. The test method is not satisfactory for the determination of impurities in steam condensate samples that contain acidic gases, such as carbon dioxide, large percentages of insoluble matter, or substances that ionize weakly. The sensitivity and accuracy of the method are decreased for samples in which hydroxides represent an appreciable percentage of the impurities, because hydroxides, which contribute to the formation of deposits, are converted to water by the ion-exchange resin. This characteristic is particularly significant when steam is generated at sufficiently high pressure to cause appreciable vaporization of sodium hydroxide from the boiler water. 13.2 Mechanical and Ion-Exchange Degasser—By combining mechanical and ion-exchange degassing of steam or condensed steam, or both, effective elimination of both acidic and basic dissolved gases is attained. This arrangement has the same advantages and limitations as the ion-exchange degasser alone, except that it will remove acidic gases, and the greater sensitivity afforded by measuring the conductance at atmospheric boiling water temperature extends the linear relationship between conductivity and the ionized impurity content down to about at least 0.005 mg/L (ppm). Although the relationship becomes somewhat nonlinear, the conductance is sensitive to concentration changes down to at least 0.005 mg/L (ppm). 20.1 The principal advantages of the sodium tracer test method are the freedom from interferences, the ability to measure extremely small concentrations of impurities, and the rapid response to transient conditions because of the absence of large stagnant sample volumes, such as reboil chambers. Either of two procedures may be employed for the sodium determination, as follows: Precise control of sample temperature is not required for the flame photometry test method. If the impurities are principally sodium compounds, impurity concentrations as low as 0.6 μg/L (ppb) may be detected by the flame photometry method and as low as 0.5 μg/L (ppb) by the sodium ion electrode test method. The sodium tracer test method is not recommended for samples having large percentages of impurities that do not contain sodium. 27.1 Silica and various metals are impurities that are occasionally found in steam and have definite tendencies to form deposits. Since these substances are not isolated when using Test Method A and are not detected when using Test Methods B and C, it is advisable to determine their concentrations separately when they are present in significant quantities.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This test method is intended for the determination of insoluble impurities contained in fats and oils used in the fatliquors and stuffing compounds.1.1 This test method covers the determination of the amount of impurities that are insoluble in kerosine and petroleum ether contained in fats and oils.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The trace hydrocarbon compounds listed can have an effect in the commercial use of butadiene. This test method is suitable for use in process quality control and in setting specifications.1.1 This test method covers the determination of butadiene-1,3 purity and impurities such as propane, propylene, isobutane, n-butane, butene-1, isobutylene, propadiene, trans-butene-2, cis-butene-2, butadiene-1,2, pentadiene-1,4, and, methyl, dimethyl, ethyl, and vinyl acetylene in polymerization grade butadiene by gas chromatography. Impurities including butadiene dimer, carbonyls, inhibitor, and residue are measured by appropriate ASTM procedures and the results used to normalize the component distribution obtained by chromatography.NOTE 1: Other impurities present in commercial butadiene must be calibrated and analyzed. Other impurities were not tested in the cooperative work on this test method.NOTE 2: This test method can be used to check for pentadiene-1,4 and other C5s instead of Test Method D1088.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1 and 9.3.1.3.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The test is suitable for setting specifications on ethylbenzene and for use as an internal quality control tool where ethylbenzene is used in manufacturing processes. It may be used in development or research work involving ethylbenzene.4.2 Purity is commonly reported by subtracting the determined expected impurities from 100 %. Absolute purity cannot be determined if unknown impurities are present.1.1 This test method describes the analysis of normally occurring impurities in, and the purity of, ethylbenzene by gas chromatography. Impurities determined include nonaromatic hydrocarbons, benzene, toluene, xylenes, cumene, and diethylbenzene isomers.1.2 This test method is applicable for impurities at concentrations from 0.001 to 1.000 % and for ethylbenzene purities of 99 % or higher. At this level, p-xylene may not be detected.1.3 In determining the performance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
30 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页