微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method is primarily intended as a test for compliance with compositional specifications. It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that the work will be performed in a properly equipped laboratory.1.1 This test method covers the determination of oxygen in titanium and titanium alloys in mass fractions from 0.01 % to 0.5 % and the determination of nitrogen in titanium and titanium alloys in mass fractions from 0.003 % to 0.11 %.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 8.8.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1. Scope and Object This clause of part 1 is applicable except as follows: 1.1 Scope Replacement: This standard applies to STERILIZERS, including those having an automatic loading and unloading system, with one or more C HAMBERS operating at

定价: 910元 / 折扣价: 774

在线阅读 收 藏

5.1 This test method is primarily intended as a referee test for compliance with compositional specifications. It is assumed that all who use this test method will be trained analysts, capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory.1.1 This test method covers the determination of oxygen in copper and copper alloys from 0.00035 % to 0.090 %.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is intended for the routine analysis of reactive metals and reactive metal alloys to verify compliance with compositional specifications such as those specified by Committees B09 and B10. It is expected that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that the work will be performed in a properly equipped laboratory.1.1 This test method applies to the determination of hydrogen in reactive metals and reactive metal alloys, particularly titanium and zirconium, with mass fractions from 9 mg/kg to 320 mg/kg.1.2 This method has been interlaboratory tested for titanium and zirconium and alloys of these metals and can provide quantitative results in the range specified in 1.1. It may be possible to extend the quantitative range of this method provided a method validation study, as described in Guide E2857, is performed and the results of the study show the method extension meets laboratory data quality objectives. This method may also be extended to alloys other than titanium and zirconium provided a method validation study, as described in Guide E2857, is performed.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Section 9.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method is primarily intended as a test for compliance with compositional specifications. It is assumed that all who use this method will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that the work will be performed in a properly equipped laboratory.1.1 This test method covers the determination of oxygen in tantalum powder in concentrations from 0.05 % to 0.50 %.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 These test methods for the chemical analysis of metals and alloys are primarily intended to test such materials for compliance with compositional specifications. It is assumed that all who use these test methods will be trained analysts, capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory.1.1 These test methods cover the determination of carbon, sulfur, nitrogen, and oxygen, in steel, iron, nickel, and cobalt alloys having chemical compositions within the following limits:Element Mass Fraction Range, %Aluminum 0.001 to 18.00Antimony 0.002 to 0.03Arsenic 0.0005 to 0.10Beryllium 0.001 to 0.05Bismuth 0.001 to 0.50Boron 0.0005 to 1.00Cadmium 0.001 to 0.005Calcium 0.001 to 0.05Carbon 0.001 to 4.50Cerium 0.005 to 0.05Chromium 0.005 to 35.00Cobalt 0.01 to 75.0Niobium 0.002 to 6.00Copper 0.005 to 10.00Hydrogen 0.0001 to 0.0030Iron 0.01 to 100.0Lead 0.001 to 0.50Magnesium 0.001 to 0.05Manganese 0.01 to 20.0Molybdenum 0.002 to 30.00Nickel 0.005 to 84.00Nitrogen 0.0005 to 0.50Oxygen 0.0005 to 0.03Phosphorus 0.001 to 0.90Selenium 0.001 to 0.50Silicon 0.001 to 6.00Sulfur 0.002 to 0.35Tantalum 0.001 to 10.00Tellurium 0.001 to 0.35Tin 0.002 to 0.35Titanium 0.002 to 5.00Tungsten 0.005 to 21.00Vanadium 0.005 to 5.50Zinc 0.005 to 0.20Zirconium 0.005 to 2.5001.2 The test methods appear in the following order:  SectionsCarbon, Total, by the Combustion and Infrared Absorption or Thermal Conductivity Detection Test Method 10 – 20   Nitrogen by the Inert Gas Fusion and Thermal Conductivity Detection Test Method 32 – 42   Oxygen by the Inert Gas Fusion and Infrared Absorption or Thermal Conductivity Detection Test Method 43 – 54   Sulfur by the Combustion-Infrared Absorption Detection Test Method 55 – 65   Sulfur by the Combustion–Infrared Absorption Test Method (Potassium Sulfate Calibration) – Discontinued 2018  21 – 311.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 6.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 The chemical measurement processes covered by this guide are used for determination of Carbon, Sulfur, Nitrogen, Oxygen and Hydrogen in metals, ores and related materials. A test method utilizing this guidance is used to test such materials, and also form the basis for quality assurance of these materials. Thus, it is economically and scientifically critical that these instruments be understood by the laboratories that use them.5.2 It is assumed that all who use this guide will be trained analysts, capable of performing common laboratory procedures skillfully, and safely. It is expected that any work will be performed in a properly equipped laboratory.5.3 It is expected that the laboratory will prepare their own work procedures for any of the information described in this guide.5.4 This guide contains numerous references to “manufacturer’s recommendations”. The user of this guide is expected to refer to the instrument operation manual for the specific instrument being used or consult directly with the manufacturer to obtain instructions or recommendations.5.5 This guide stresses the conservation of certified reference materials (CRMs). CRMs should not be used for drift checks or conditioning measurments. Other materials should be developed and used for these operations.1.1 This guide covers information for using Combustion, Inert Gas Fusion and Hot Extraction instruments to determine the mass fraction of the non-metallic elements Carbon, Sulfur, Nitrogen, Oxygen and Hydrogen in metals, ores and related materials.1.2 This guide does not specify all the operating conditions because of the differences among different manufacturer’s instruments. Laboratories should follow instructions provided by the manufacturer of the instrument.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 The information in this guide is contained in the sections indicated as follows:  SectionsCarbon/Sulfur by Combustion/Infrared Detection 14 – 19Nitrogen/Oxygen by Inert Gas Fusion/Thermal Conductivity and Infrared Detection 20 – 25Hydrogen by Inert Gas Fusion Instrumental Measurement and Hot Extraction/Various Detection Cell Technology 26 – 311.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 MOX is used as a nuclear-reactor fuel. This test method is designed to determine whether the hydrogen content of the pellets meet the requirements of fuel specification. Examples of these requirements are given in Specification C833. Other requirements may apply based on agreements between the supplier and the customer.5.2 This method is suitable for all sintered MOX pellets containing up to 15 weight % PuO2 when the UO2 and PuO2 meet the requirements of Specifications C753 and C757. The method uncertainty is related to the concentration of the hydrogen in the sample. At lower concentrations, the relative uncertainty increases. At hydrogen contents close to the typical hydrogen content specification limit (1.3 μg hydrogen/g U + Pu metal); the combined relative uncertainty at the 95 % confidence level (k = 2) is approximately 30 %.1.1 This test method covers the determination of hydrogen in nuclear-grade mixed oxides of uranium and plutonium ((U, Pu)O2) sintered fuel pellets. This test method is an alternative to Test Method C698 for the determination of moisture in nuclear-grade sintered mixed oxide (MOX) fuel pellets. Test Method C698 describes the detection of moisture in mixed oxides using a coulometric, electrolytic moisture analyzer. Although the main source of H2 in the fuel pellets is moisture, there could be other sources. The MOX pellet Specification C833 specifies a limit for hydrogen from all sources, not only moisture. The inert gas fusion followed by thermal conductivity detector specified in this test method allows for detection of hydrogen from all sources. Therefore, this test method can be used to determine the limit specified in C833.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method provides a procedure for the determination of nitrogen in titanium and titanium alloys in concentrations from 0.007 to 0.11 %.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in 7.8 and Section 8.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended for the routine testing of aluminum and aluminum alloys to quantitatively determine the mass fraction of hydrogen in aluminum and aluminum alloys. It is not intended to verify compliance with compositional specifications because of the lack of certified reference materials. It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that the work will be performed in a properly equipped laboratory.1.1 This test method applies to the determination of hydrogen in aluminum and aluminum alloys in mass fractions from 0.05 mg/kg to 1 mg/kg.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
10 条记录,每页 10 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页