微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 1189.8-1991 Data processing - Vocabulary Control, integrity and security 被代替 发布日期 :  1991-03-28 实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

4.1 Significance—The increased use of geomembranes as barrier materials to restrict fluid migration from one location to another in various applications, and the various types of seaming methods used in joining geomembrane sheets, has created a need to standardize tests by which the various seams can be compared and the quality of the seam systems can be evaluated. This test method is intended to meet such a need.4.2 Use—Accelerated seam test provides information as to the status of the field seam. Data obtained by this test method should be used with site-specific contract plans, specification, and CQC/CQA documents. This test method is useful for specification testing and for comparative purposes, but does not necessarily measure the ultimate strength that the seam may acquire.1.1 This test method covers an accelerated, destructive test method for geomembranes in a geotechnical application.1.2 This test is applicable to field-fabricated geomembranes that are scrim reinforced or nonreinforced.1.3 This test method is applicable for field seaming processes that use a chemical fusion agent or bodied chemical fusion agent as the seaming mechanism.1.4 Subsequent decisions as to seam acceptance criteria are made according to the site-specific contract plans, specification, and CQC/CQA documents.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 Hazardous Materials—The use of the oven in this test method may accelerate fume production from the test specimen and solvent(s) used to bond them.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Significance—With the increased use of geomembranes as a barrier material to restrict liquid migration from one location to another, a need has been created for a standard test method to evaluate the quality of geomembrane seams produced by tape methods. In the case of geomembranes, it has become evident that geomembrane seams can exhibit separation in the field under certain conditions. This is an index-type test method used for quality assurance and quality control purposes; it is also intended to provide the quality engineer with sufficient seam peel and shear data to evaluate seam quality.4.2 Use—Recording and reporting data, such as separation that occurs during the peel test and elongation during the shear test, will allow the quality assurance engineer to take measures necessary to ensure the repair of inferior seams during construction, and therefore, minimize the potential for seam separation while in service. The acceptable value of adhesion measured will, of course, vary from product to product as a result of different formulations and types of products. However, once a product is established, minimum values of separation force can be determined and agreed to by producer and consumer, and both can monitor the installation to ensure maintenance of the agreed-upon minimum value.1.1 This test method describes destructive quality control and/or quality assurance tests to determine the integrity of seams produced using taped seaming methods. This test method presents the procedures used for determining the quality of taped seams subjected to both peel and shear tests. These test procedures are intended for nonreinforced and reinforced geomembranes.1.2 The types of tape seaming techniques used to construct geomembrane seams include the following:1.2.1 Inseam Tape—This technique requires the membrane to be overlapped a minimum distance. The top sheet is folded back and both the bottom sheet and the top sheet are primed with an adhesive primer. The primer is allowed to flash off. The tape adhesive is applied to the bottom sheet so that a minimum of the tape will extend out from under the top sheet when laid over the tape. The top sheet is allowed to lay flat over the tape and the release paper is removed by pulling it at a 45° to 90° angle, keeping the release paper flat to the surface of the bottom sheet. The seam area is then rolled with a silicone-sleeved roller.1.2.2 Cover Strip Tape—This technique requires the membrane to be overlapped a minimum distance. An area either side of the seam edge is primed. The primer is allowed to flash off. The cover strip is applied with the adhesive side down, centered over the top sheet edge while removing the release paper as it proceeds along centered over the edge of the top sheet. The cover strip is then rolled with a silicone-sleeved roller.1.3 For nondestructive test methods, see Practice D4437/D4437M.1.4 This test method is applicable for seaming processes that use tape adhesive as a seaming mechanism.1.5 Subsequent decisions as to seam acceptance criteria are made according to the site-specific contract plans, specifications, and contractor quality control/contractor quality assurance (CQC/CQA) documents.1.6 In case of a material-specific test method, this test method shall take precedence.1.7 Hazardous Materials—Always consult the proper material safety data sheets for any hazardous material used for the proper ventilation and protection. The use of the oven in these test methods, in this practice, may accelerate fume production from the test specimen.1.8 The values stated in both inch-pound and SI units are to be regarded separately as the standard. Values in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These test methods provide a means to measure quantitatively the bond integrity between the outer layers of the transparency and the interlayer, or to measure the cohesive properties of the interlayer, under various loading conditions.4.2 These test methods provide empirical results useful for control purposes, correlation with service results, and as quality control tests for acceptance of production parts.4.3 Test results obtained on small, laboratory-size samples shown herein are indicative of full-size part capability, but not necessarily usable for design purposes.1.1 These test methods cover determination of the bond integrity of transparent laminates. The laminates are usually made of two or more glass or hard plastic sheets held together by an elastomeric material. These test methods are intended to provide a means of determining the strength of the bond between the glass or plastic and the elastomeric interlayer under various mechanical or thermal loading conditions.1.2 The test methods appear as follows:Test Methods SectionsTest Method A—Flatwise Bond Tensile Strength  5 – 11Test Method B—Interlaminar Shear Strength 12 – 17Test Method C—Creep Rupture 18 – 25Test Method D—Thermal Exposure 26 – 301.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Inspection, repair, and construction of ASTs in petroleum service should follow at a minimum the requirements of API 650 and API 653. These standards describe methods for testing the weld quality and structural and hydraulic integrity of new or repaired ASTs. With increasing emphasis on protecting the environment and with environmental issues related to the storing of petroleum materials in ASTs, owners and operators of such tanks may want or need a guide devoted to existing and enhanced methods for evaluating the hydraulic integrity of new or repaired tank bottoms.5.2 The consequences of a tank bottom failure include the economic loss of product, cost of repair or replacing the tank bottom, and exposure to the cost of environmental remediation and potential damage or harm to adjacent lands that may give rise to adverse public relations or regulatory action. In addition, releases of petroleum products introduce potential fire or explosive conditions.5.3 Owners and operators of ASTs or their agents can use this guide to help choose methods of evaluating the hydraulic integrity of their repaired or new tank bottoms. Selection of the methods should be based on regulatory and economic criteria that include operational and cost/benefit considerations.5.4 This guide is intended for use by an individual experienced in repair and construction of ASTs in petroleum service.5.5 This guide is intended for use when repairing or building ASTs. This guide does not address suitability for use or imply useful life of an AST bottom.5.6 This guide is intended to be used in conjunction with and as a supplement to standards provided for hydraulic integrity in API 650 and API 653.5.7 Procedures or methods included here may be supported by a previously completed and documented performance evaluation(s) that may lend itself as valuable results validation.1.1 This guide is intended to provide the reader with a knowledge of construction examination procedures and current technologies that can be used to give an owner or operator of an aboveground storage tank (AST) in petroleum service, relevant information on the hydraulic integrity of a new, repaired, or reconstructed tank bottom prior to return to service. This guide does not pertain to horizontal ASTs, manufacture of tanks using UL 142, or to tanks constructed of concrete or other non-ferrous materials.1.2 The adoption of the methods and technologies presented in this guide are not mandatory, rather they represent options that may be selected to identify the likelihood of product leaking through a new, repaired, or reconstructed tank bottom.1.3 This guide is not intended to suggest or treat any technology in a preferential manner.1.4 The person responsible for applying this guide should be a knowledgeable individual with experience in the design, inspection, construction, or combination thereof, of aboveground storage tanks for use in petroleum service, and should also be certified under the requirements of API 653 when use is related to tank bottom repair.1.5 Refer to API RP 575 for useful information and recommended practices for maintenance and inspection of atmospheric and low pressure stirage tanks.1.6 This guide is written in metric measure units (SI Units) in accordance with requirements of Practice E621. English measure equivalents are in parentheses.1.7 The applicability of this guide to the proposed tank configuration and service conditions should be established prior to use.1.8 This guide complies with ASTM policy for development and subsequent use of a standard.1.9 This guide is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this guide or for additional standards and should be addressed to ASTM International, 100 Barr Harbor Drive, W. Conshohocken, PA 19428.1.10 This guide is not intended for use as a model code, ordinance or regulation.1.11 This guide does not cover every tank bottom inspection procedure that may be properly applied.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This method uses data from ultrasonic probes lowered into parallel access ducts, or in a single access duct, in the deep foundation element to assess the homogeneity and integrity of concrete between the probes. The data are used to confirm adequate concrete quality or identify zones of poor quality. If defects are detected, then further investigations should be made by excavation or coring the concrete as appropriate, or by other testing such as Test Method D1143, D4945 or D5882, and measures taken to remediate the structure if a defect is confirmed.5.2 Limitations: 5.2.1 For crosshole tests, the access ducts should preferably be made of steel to prevent debonding of the access duct from the concrete resulting in an anomaly. This test can assess to the integrity of the concrete mainly in the area bounded by the access ducts, which means typically inside the reinforcement cage.5.2.2 For single hole tests the access tubes must be plastic tubes. Testing should therefore be performed as soon as practical in order to avoid debonding issues. Since the generated waves travel through the concrete around the access duct, unless a flaw is massive enough and very near to the access duct it may not be detected by this method.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing and inspection. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers procedures for checking the homogeneity and integrity of concrete in deep foundation such as bored piles, drilled shafts, concrete piles or augercast piles. This method can also be extended to diaphragm walls, barrettes, dams etc. In this test method, all the above will be designated “deep foundation elements.” The test measures the propagation time and relative energy of an ultrasonic pulse between parallel access ducts (crosshole) or in a single tube (single hole) installed in the deep foundation element. This method is most applicable when performed in tubes that are installed during construction.1.2 Similar techniques with different excitation sources exist, but these techniques are outside the scope of this test method.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4 The method used to specify how data are collected, calculated, or recorded in this test method is not directly related to the accuracy to which data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.5 This standard provides minimum requirements for crosshole (or single hole) testing of concrete deep foundation elements. Plans, specifications, provisions, or combinations thereof prepared by a qualified engineer, and approved by the agency requiring the test(s), may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program.1.6 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 Limitations—Proper installation of the access ducts is essential for effective testing and interpretation. The method does not give the exact type of flaw (for example, inclusion, honeycombing, lack of cement particles, etc.) but rather only that a flaw exists.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The design of a PV module or system intended to provide safe conversion of the sun's radiant energy into useful electricity must take into consideration the possibility of hazard should the user come into contact with the electrical potential of the array. In addition, the insulation system provides a barrier to electrochemical corrosion, and insulation flaws can result in increased corrosion and reliability problems. This test method describes a procedure for verifying that the design and construction of the array provides adequate electrical isolation through normal installation and use. At no location on the array should the PV-generated electrical potential be accessible, with the obvious exception of the output leads. The isolation is necessary to provide for safe and reliable installation, use, and service of the PV system.5.2 This test method describes a procedure for determining the ability of the array to provide protection from electrical hazards. Its primary use is to find insulation flaws that could be dangerous to persons who may come into contact with the array. Corrective action taken to address such flaws is beyond the scope of this test method.5.3 This procedure may be specified as part of a series of acceptance tests involving performance measurements and demonstration of functional requirements. Large arrays can be tested in smaller segments. The size of the array segment to be tested (called “circuit under test” in this test method) is usually selected at a convenient break point and sized such that the expected resistance or current reading is within the middle third of the meter's range.5.4 Insulation leakage resistance and insulation leakage current leakage are strong functions of array dimensions, ambient relative humidity, absorbed water vapor, and other factors. For this reason, it is the responsibility of the user of this test method to specify the minimum acceptable leakage resistance for this test.5.4.1 Even though a numerical quantity is specified, actual results are often pass-fail in that when a flaw is found, the leakage current changes from almost nothing to the full scale value on the meter.5.5 The user of this test method must specify the option used for connection to the array during the test. The short-circuited option requires a shorting device with leads to connect the positive and negative legs of the circuit under test. For larger systems, where the shorting device may have to be rated for high current and voltage levels, the open-circuited option may be preferred. The open-circuited option requires the user to correct readings to account for the PV-generated voltage, and the procedure for making such corrections is beyond the scope of this test method. The short-circuited option may be easier for small systems where the voltage and current levels are low and the distance between the plus and minus leads of the circuit under test are small. The short-circuited option minimizes the chance of exposing array components to voltage levels above those for which they are rated.1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array.1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
34 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页