微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

Low operating temperature fuel cells such as proton exchange membrane (PEM) fuel cells require high purity hydrogen for maximum material performance and lifetime. Analysis to part-per-billion (ppb) concentration of individual cation contaminants such as potassium, sodium and ammonium in hydrogen and related fuel cell supply gases is necessary for assuring a feed gas of sufficient purity to satisfy fuel cell system needs. More specifically, cations such as ammonium causes irreversible performance degradation of proton exchange membranes used in low temperature fuel cells by reacting with protons in the membrane to form ammonium ions.Although not intended for application to gases other than hydrogen and related fuel cell supply gases, techniques within this test method can be applied to other gaseous samples requiring cation analysis.1.1 This test method describes a procedure for the determination of cations in hydrogen and other fuel cell feed gases. It has been successfully applied to other types of gaseous samples including air, engine exhaust, and landfill samples. An ion chromatograph/conductivity detector (IC/CD) system is used to determine cations. Sensitivity from low part per billion (ppb, μg/l, μg/kg) up to part per million (ppm, mg/l, mg/kg) concentration are achievable dependant on the amount of hydrogen or other fuel cell gas sampled. This test method can be applied to other gaseous samples requiring analysis of trace constituents provided an assessment of potential interferences has been accomplished.1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Capillary ion electrophoresis provides a simultaneous separation and determination of several inorganic anions using nanolitres of sample in a single injection. All anions present in the sample matrix will be visualized yielding an anionic profile of the sample.5.2 Analysis time is less than 5 minutes with sufficient sensitivity for drinking water and wastewater applications. Time between samplings is less than seven minutes allowing for high sample throughput.5.3 Minimal sample preparation is necessary for drinking water and wastewater matrices. Typically, only a dilution with water is needed.5.4 This test method is intended as an alternative to other multi-analyte methods and various wet chemistries for the determination of inorganic anions in water and wastewater. Compared to other multi-analyte methods the major benefits of CIE are speed of analysis, simplicity, and reduced reagent consumption and operating costs.1.1 This test method covers the determination of the inorganic anions fluoride, bromide, chloride, nitrite, nitrate, ortho-phosphate, and sulfate in drinking water, wastewater, and other aqueous matrices using capillary ion electrophoresis (CIE) with indirect UV detection. See Figs. 1-6.1.2 The test method uses a chromate-based electrolyte and indirect UV detection at 254 nm. It is applicable for the determination or inorganic anions in the range of 0.1 to 50 mg/L except for fluoride whose range is 0.1 to 25 mg/L.1.3 It is the responsibility of the user to ensure the validity of this test method for other anion concentrations and untested aqueous matrices.NOTE 1: The highest accepted anion concentration submitted for precision and bias extend the anion concentration range for the following anions: Chloride to 93 mg/L, Sulfate to 90 mg/L, Nitrate to 72 mg/L, and ortho-phosphate to 58 mg/L.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice is useful for assessing the source for an oil spill. Other less complex analytical procedures (Test Methods D3328, D3414, D3650, and D5037) may provide all of the necessary information for ascertaining an oil spill source; however, the use of a more complex analytical strategy may be necessary in certain difficult cases, particularly for significantly weathered oils. This practice provides the user with a means to this end.4.1.1 This practice presumes that a “screening” of possible suspect sources has already occurred using less intensive techniques. As a result, this practice focuses directly on the generation of data using preselected targeted compound classes. These targets are both petrogenic and pyrogenic and can constitute both major and minor fractions of petroleum oils; they were chosen in order to develop a practice that is universally applicable to petroleum oil identification in general and is also easy to handle and apply. This practice can accommodate light oils and cracked products (exclusive of gasoline) on the one hand, as well as residual oils on the other.4.1.2 This practice provides analytical characterizations of petroleum oils for comparison purposes. Certain classes of source-specific chemical compounds are targeted in this qualitative comparison; these target compounds are both unique descriptors of an oil and chemically resistant to environmental degradation. Spilled oil can be assessed in this way as being similar or different from potential source samples by the direct visual comparison of specific extracted ion chromatograms (EICs). In addition, other, more weathering-sensitive chemical compound classes can also be examined in order to crudely assess the degree of weathering undergone by an oil spill sample.4.2 This practice simply provides a means of making qualitative comparisons between petroleum samples; quantitation of the various chemical components is not addressed.1.1 This practice covers the use of gas chromatography and mass spectrometry to analyze and compare petroleum oil spills and suspected sources.1.2 The probable source for a spill can be ascertained by the examination of certain unique compound classes that also demonstrate the most weathering stability. To a greater or lesser degree, certain chemical classes can be anticipated to chemically alter in proportion to the weathering exposure time and severity, and subsequent analytical changes can be predicted. This practice recommends various classes to be analyzed and also provides a guide to expected weathering-induced analytical changes.1.3 This practice is applicable for moderately to severely degraded petroleum oils in the distillate range from diesel through Bunker C; it is also applicable for all crude oils with comparable distillation ranges. This practice may have limited applicability for some kerosenes, but it is not useful for gasolines.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Sulfates and chlorides can be found in filter plugging deposits and fuel injector deposits. The acceptability for use of the fuel components and the finished fuels depends on the sulfate and chloride content.5.2 Existent and potential inorganic sulfate and total chloride content, as measured by this test method, can be used as one measure of the acceptability of gasoline components for automotive spark-ignition engine fuel use.1.1 This test method covers a direct injection ion chromatographic procedure for determining existent and potential inorganic sulfate and total inorganic chloride content in hydrous and anhydrous denatured ethanol and butanol to be used in motor fuel applications. It is intended for the analysis of ethanol and butanol samples containing between 1.0 mg/kg to 20 mg/kg of existent or potential inorganic sulfate and 1.0 mg/kg to 50 mg/kg of inorganic chloride.NOTE 1: Tertiary butanol is not included in this test method. 1-butanol, 2-butanol, and isobutanol are included in the testing and research report for this test method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice deals primarily with identifying the terms and relationships of those techniques that use ion exchange chromatography to separate mixtures and a conductivity detector to detect the separated components. However, most of the terms should also apply to ion chromatographic techniques that employ other separation and detection mechanisms. The apparatus to be used in the chromatography shall consist of syringe pumps, reciprocating pumps, pneumatic pumps, septum injectors, valve injectors, precolumns, concentrator columns, guard columns, separating columns, suppressor columns, conductivity suppressors, membrane suppressors, micromembrane suppressor, bulk property detectors, and solute property detectors. Chemical reagents to be used in the chemical analysis shall be of four kinds: mobile phase, stationary phase, solid support, and column packing materials. The stationary phase has two types which are the liquid phase and interactive solid phase material. Totally porous packing and pellicular packing are the two types of column packing materials.1.1 This practice deals primarily with identifying the terms and relationships of those techniques that use ion exchange chromatography to separate mixtures and a conductivity detector to detect the separated components. However, most of the terms should also apply to ion chromatographic techniques that employ other separation and detection mechanisms.1.2 Because ion chromatography is a liquid chromatographic technique, this practice uses, whenever possible the terms and relationships identified in Practice E682.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D4127-18a Standard Terminology Used with Ion-Selective Electrodes Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This terminology covers those terms recommended by the International Union of Pure and Applied Chemistry (IUPAC),2 and is intended to provide guidance in the use of ion-selective electrodes for analytical measurement of species in water, wastewater, and brines.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method permits measurement of the fluorine content of coal and coke for the evaluation of potential fluorine emission from coal combustion or conversion processes. When coal samples are combusted in accordance with this test method, the fluorine is quantitatively released from the coal and retained in the pyrohydrolysate so that it is representative of the total fluorine concentration in coal.1.1 This test method covers the analysis of total fluorine in coal and coke.1.2 This analysis was successfully tested on coals containing 37 % ash or less (see AS 1038.10.4 and Conrad2).1.3 The values stated in SI units shall be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Note 4.1.5 All accountability and quality control aspects of Guide D4621 apply to this test method.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D4658-15 Standard Test Method for Sulfide Ion in Water (Withdrawn 2024) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

5.1 Sulfide ion is found in ground waters and wastewater, causing odor and corrosion problems. If acidified, these waters can release hydrogen sulfide, which is extremely toxic even at low levels. This test method provides a means for interference-free measurement of free sulfide ion.NOTE 1: Sulfide forms complexes with hydrogen ions (HS1− and H2S). In addition, sulfide ion forms soluble complexes with elemental sulfur (S22−, S32−, S42−, etc.), tin, antimony, and arsenic ions.1.1 This test method uses an ion-selective electrode to determine sulfide ion in water. The test method is applicable in the range from 0.04 to 4000 mg/L of sulfide.1.2 Precision data presented in this test method were obtained using reagent water only. It is the user's responsibility to ensure the validity of this test method for untested types of water.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Sulfide samples, when acidified, can release highly toxic hydrogen sulfide gas. For a specific precautionary statement, see 7.5.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 In the power-generation industry, high-purity water is used to reduce corrosion from anions, such as sulfate, chloride, and fluoride. These anions are known to be detrimental to materials of construction used in steam generators, reactor vessel internals and recirculation piping, heat exchangers, connective piping, and turbines. Most electric generating plants try to control these anions to <1.0 μg/L in the steam generator feed water. Some nuclear power plants have been able to control anion contaminants at less than 0.02 μg/L.5.2 These anions and others cause low product yields in semiconductor manufacturing. They are also monitored and controlled at similarly low levels as in the electric power industry.5.3 Low molecular weight organic acids (acetate, formate, propionate) have been detected in steam generator feed water. These low molecular weight organic materials are believed to be high-temperature degradation products of chemicals used to control cycle water pH and organic contaminants in cycle makeup water.5.4 In the semiconductor industry, anion contaminants may come from the breakdown of low molecular weight organic materials by ultraviolet light radiation, which is frequently used to produce bacteria-free water. These organic compounds may also contribute to low product yield.5.5 The production of high-purity water for process makeup and use frequently employs the use of demineralizers to remove unwanted anion contaminants. Also in the electric power industry, demineralizers are used in the process stream to maintain low levels of these contaminants. As such, it is important to monitor this process to ensure that water quality standards are being met. These processes can be monitored for the above-mentioned anions.5.6 On-line measurements of these contaminants provide a greater degree of protection of the processes by allowing for frequent on-line measurement of these species. Early detection of contaminant ingress allows for quicker corrective action to locate, reduce, or eliminate, or combination thereof, the source. Grab samples will not provide the same level of protection because of their intermittent nature and the longer time required to obtain and then analyze the sample.5.7 Additionally, on-line monitoring significantly reduces the potential for contamination of high-purity water samples, a significant problem when sampling and testing high-purity water.1.1 This test method covers on-line analysis of high-purity water by the ion chromatography technique. This test method is applicable for measuring various anionic contaminants in high-purity water, typically in the range of 0.01 to 100 μg/L. This test method is used to determine the concentration of acetate, formate, chloride, fluoride, phosphate, nitrate, and sulfate in a continuously flowing sample. The range of the test method is only as good as the reagent water available for preparing standards. At extremely low concentrations, <1.0 μg/L, preparing standards is difficult, and extra care must be taken in their preparation. The sample may have to be conditioned from higher pressures and temperatures to conditions that are suitable for use by on-line instruments.1.2 Online sample analysis of flowing streams does not lend itself to collaborative studies due to the nature of the sample and the possibility of contamination that may result from handling the sample as part of the collaborative study. Therefore this standard test method is not based on the results of a collaborative study but is intended to provide the best possible guidance for doing this type of analysis.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1246-16(2021)e1 Standard Test Method for Bromide Ion in Water Active 发布日期 :  1970-01-01 实施日期 : 

5.1 By analysis for bromide in water, wastewater, and brackish waters, it is possible to evaluate the origin of the water, its potential as a source of bromide, and its condition with regard to pollution.1.1 This test method is applicable to the measurement of bromide ion in water, ground water, and drinking water.1.2 Samples containing 0.5 mg/L to 1000 mg/L of bromide may be analyzed by this test method. The concentration range may be extended by the dilution of an appropriate aliquot.1.3 The precision and bias statements were determined on natural and ground waters. It is the responsibility of the analyst to assure the validity of this test method for untested matrices.1.4 A titrimetric and two colorimetric test methods for iodide and bromide were discontinued. Refer to Appendix X1 for historical information.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of sulfate and other dissolved constituents is important in identifying the source of brines produced during the drilling and production phases of crude oil or natural gas.1.1 This test method covers the turbidimetric determination of sulfate ion in brackish water, seawater, and brines. It has been used successfully with synthetic brine grade waters; however, it is the user's responsibility to ensure the validity of this test method to other matrices.1.2 This test method is applicable to waters having an ionic strength greater than 0.65 mol/L and a sulfate ion concentration greater than 25 mg/L. A concentration less than 25 mg/L sulfate can be determined by using a standard addition method.1.3 For brines having an ionic strength of less than 0.65 mol/L, refer to Test Methods D516.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

7.1 Accurate elemental analysis of petroleum products and lubricants is necessary for the determination of chemical properties, which are used to establish compliance with commercial and regulatory specifications.7.2 Ion chromatography is often used in cases where anion content of the material is desired. Some of the hetero-atoms can be converted by combustion in an oxygen atmosphere followed by aqueous dissolution to convert them into anions before ion chromatographic determination. A number of ion chromatographic ASTM standards issued are listed in Section 2. Of these, the D02, D05, and D16 Committee standards which use ion chromatography are listed in Table 1.1.1 This practice covers the information on calibration, quality control, and operational guidance for anionic measurements using ion chromatography (IC).1.2 IC Related Standards—Chemically or electrolytically regenerated suppressed ion chromatography standards for aqueous matrices include Test Methods D2988, D4327, D5085, D5542, D5827, D5987, D5996, D6581, D7319, D7328, D7359, D7773, D7994, and D8150; IC instrumentation requirements are described in Practices E1151, and E1511.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Resins used in demineralization systems may deteriorate due to many factors including chemical attack, fouling by organic and inorganic materials, mishandling, or the effects of aging. Detection of degradation or fouling may be important in determining the cause of poor demineralizer performance.1.1 This guide presents a series of tests and evaluations intended to detect fouling and degradation of particulate ion exchange materials. Suggestions on reducing fouling and on cleaning resins are given.1.2 This guide is to be used only as an aid in the evaluation of particulate ion exchange material performance and does not purport to address all possible causes of unsatisfactory performance. The evaluations of mechanical and operational problems are not addressed.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Organic chlorides do not occur naturally in crude oil. When present, they result from contamination in some manner, such as disposal of chlorinated solvent used in many dewaxing pipeline or other equipment operations.5.1.1 Uncontaminated crude oil will contain no detectable organic chloride, and most refineries can handle very small amounts without deleterious effects.5.1.1.1 Most trade contracts specify that no organic chloride is present in the crude oil.5.1.2 Several pipelines have set specification limits less than 1 μg/g organic chlorides in the whole crude, and less than 5 μg/g in the light naphtha, based on the yield of naphtha being 20 % of the original sample.5.1.2.1 To ensure less than 1 μg/g organic chloride in the crude oil, the amount measured in the naphtha fraction shall be less than 1/f (where f is the naphtha fraction calculated with Eq 1). For example, a crude oil sample with 1 μg/g of organic chloride but a 10 % yield of naphtha would create a naphtha containing 10 μg/g organic chloride. Further, a crude containing 1 μg/g of organic chloride but a 40 % yield of naphtha would create a naphtha containing 2.5 μg/g organic chloride. Due to the difference in naphtha yields, the impact on refining operations can be significantly different.5.1.2.2 Since crude oil deposits worldwide exhibit different yields of naphtha, the working range of detection for this method shall cover a broad range, possibly as high as 50 μg/g in a naphtha fraction.5.1.3 Organic chloride present in the crude oil (for example, methylene chloride, perchloroethylene, etc.) is usually distilled into the naphtha fraction. Some compounds break down during fractionation and produce hydrochloric acid, which has a corrosive effect. Some compounds survive fractionation and are destroyed during hydro-treating (desulfurization of the naphtha).5.2 Other halides can also be used for dewaxing crude oil; in such cases, any organic halides will have similar impact on the refining operations as the organic chlorides.5.3 Organic chloride species are potentially damaging to refinery processes. Hydrochloric acid can be produced in hydro- treating or reforming reactors and the acid accumulates in condensing regions of the refinery. Unexpected concentrations of organic chlorides cannot be effectively neutralized and damage can result. Organic chlorides are not known to be naturally present in crude oils and usually result from cleaning operations at producing sites, pipelines, or tanks. It is important for the oil industry to have common methods available for the determination of organic chlorides in crude oil, particularly when transfer of custody is involved.1.1 This test method covers the determination of organic chloride (above 1 μg/g organically-bound chlorine) in crude oils, using distillation and combustion ion chromatography.1.2 This test method involves the distillation of crude oil test specimens to obtain a naphtha fraction prior to chloride determination. The chloride content of the naphtha fraction of the whole crude oil can thereby be obtained. See Section 6 regarding potential interferences.1.3 The test procedure covers the determination of organic chloride in the washed naphtha fraction of crude oil by combustion ion chromatography. Other halides can be determined but are not included in the precision statement of the test method.1.4 The values stated in SI units are to be regarded as standard. The preferred concentration units are micrograms of chloride per gram of sample.1.4.1 Exception—The values given in parentheses are for information only.1.5 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
78 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页