微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This guide is intended to present the elements of an approach for estimating layer moduli from deflection measurements that may then be used for pavement evaluation or overlay design. To characterize the materials in the layers of a pavement structure, one fundamental input parameter measured in the laboratory and used by some overlay design procedures is the resilient modulus. Deflection analysis provides a technique that may be used to estimate the in situ equivalent layer elastic moduli of a pavement structure as opposed to measuring the resilient moduli in the laboratory of small and sometimes disturbed samples. For many overlay design procedures that are based on layered elastic theory, the resilient modulus is approximated by this equivalent layer elastic modulus, because the equivalent modulus is determined as an average value for the total layer at the in situ stress conditions of an actual pavement.5.2 It should be emphasized that layer moduli calculated with this procedure are for a specific loading condition and for the environmental conditions at the time of testing. For these moduli to be used in pavement evaluations and overlay design, adjustments to a reference temperature, season, and design load may be required. These adjustments are not a part of this guide.5.3 The underlying assumption used in the solution is that a representative set of layer moduli exists for the particular loading condition (magnitude and area) and temperature condition, such that the theoretical or calculated deflection basin (using quasi-static layered elastic theory and the assumed static load characteristics of the NDT device) closely approximates the measured deflection basin. In reality, depending on the tolerance allowed in the procedure and the relative number of layers compared to the number of deflection sensors, several combinations of moduli may cause the two basins to “match” (or be within tolerance) reasonably well. A certain degree of engineering judgement is necessary to evaluate these alternative solutions and select the most applicable combination or eliminate unreasonable solutions, or both.5.4 There have been several studies that compared the results of various types of equipment and analysis methods; unfortunately, considerable variability has been noted. At this time, no precision estimate has been obtained from a statistically designed series of tests with different “known” materials and layer thicknesses. The back-calculated results do vary significantly with the various assumptions used in analysis to emulate the actual condition, as well as with the techniques used to produce and measure the deflections. Since the guide deals with a computerized analytical method, the repeatability is excellent if the input data and parameters remain the same. The bias of the procedure cannot be established at this time. The identity of the “true” in situ modulus, based on resilient modulus testing or some other field or laboratory test, needs to be standardized before the bias of the method can be established.1.1 This guide covers the concepts for calculating the in situ equivalent layer elastic moduli can be used for pavement evaluation, rehabilitation, and overlay design. The resulting equivalent elastic moduli calculated from the deflection data are method-dependent and represent the stiffnesses of the layers under a specific nondestructive deflection testing (NDT) device at that particular test load and frequency, temperature, and other environmental and site-specific conditions. Adjustments for design load, reference temperature, and other design-related factors are not covered in this guide. The intent of this guide is not to recommend one specific method, but to outline the general approach for estimating the in situ elastic moduli of pavement layers.1.2 This guide is applicable to flexible pavements and in some cases, rigid pavements (that is, interior slab loading), but is restricted to the use of layered elastic theory2 as the analysis method. It should be noted that the various available layered elastic computer modeling techniques use different assumptions and algorithms and that results may vary significantly. Other analysis procedures, such as finite element modeling, may be used, but modifications to the procedure are required.NOTE 1: If other analysis methods are desired, the report listed in Footnote 3 can provide some guidance.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.31.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Flammable liquid products can be generated by either pyrolysis or melting of polymers. Materials that generate flammable liquid products include thermoplastic polymers (for example, polyolefins) and thermosetting polymers (for example, polyurea and flexible polyurethane), which degrade to yield, in part, liquid pyrolyzates when pyrolyzing. Such liquid material can accumulate underneath a burning item and eventually ignite to form a pool fire, generally leading to a sharp increase in heat release rate and increase in fire hazard.5.2 Fire barriers are able to hinder the formation of a pool fire by delaying the generation and the release of flammable liquid products.5.3 This test method is intended to simulate the combustion of a central (that is, away from the edges) cross-section of a single material or a multi-layered product with ignition occurring on the top surface of the specimen.5.4 The test method is designed to assess whether liquid products are released during the test and the time at which they are released.5.5 The test method is designed to assess whether dripping occurs during the test and the time at which it occurs.5.6 The test method is designed to assess whether bottom ignition occurs during the test and the time at which it occurs.5.7 The test method is designed to assess whether pool ignition occurs during the test and the time at which it occurs.5.8 The test method is designed to assess whether burn-through occurs during the test and the time at which it occurs.5.9 The test measures heat release rate, mass loss rate and the resulting smoke obscuration as a result of exposing the specimen to a radiant heat source.5.10 The test method assesses whether the components of the specimen under examination demonstrates any of the following behaviors: breaking open, charring, appearance of superficial cracks without complete separation of the parts, melting, or shrinkage.5.11 The test method does not assess flame spread and does not account for other factors such as aging, wear and tear of a product or vandalism.1.1 This test method covers a means to measure the response of materials, products or layered assemblies when exposed to controlled levels of radiant heating, with or without an external ignitor.1.2 This test method provides an alternative test configuration to Test Method E1354 to measure the ignitability, heat release rate (including peak heat release rate and total heat released), mass loss rate, effective heat of combustion and visible smoke development.1.3 Compared to Test Method E1354, this test method adds the ability to measure the time at which the following phenomena occur: (1) appearance of liquid products (generated by either melting or pyrolysis of the specimen) underneath the sample, dripping and generation of a liquid pool underneath the specimen, (2) flaming over the bottom surface of the specimen and liquid pool, and; (3) burn-through.1.4 This test method is not intended to measure the response of products comprised of noncombustible cores.1.5 The top side of the specimens shall be exposed to an initial test heat flux of 0 kW/m2 to 75 kW/m2. External ignition, if any, shall be by electric spark.1.6 This test method has been developed for use to evaluate the fire test response characteristics of materials, products or layered assemblies. It is potentially useful for mathematical modeling, material or product design purposes, and research and development.1.7 This test method is used to measure and describe the response of assemblies to heat and flame under controlled conditions but does not by itself incorporate all factors required for fire hazard or fire risk assessment of an end-use product under actual fire conditions.1.8 This test method is used to measure the effect of fire barriers on the burning behavior of materials, products or layered assemblies to a range of radiant heat intensities but does not account for all factors that affect the performance of fire barriers at full scale.1.9 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, refer to Section 7.1.1.11 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
2 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页