微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Use as an Analytical Tool—Mathematical methods provide an analytical tool to be employed for many applications related to absorbed dose determinations in radiation processing. Mathematical calculations may not be used as a substitute for routine dosimetry in some applications (for example, medical device sterilization, food irradiation).4.2 Dose Calculation—Absorbed-dose calculations may be performed for a variety of photon/electron environments and irradiator geometries.4.3 Evaluate Process Effectiveness—Mathematical models may be used to evaluate the impact of changes in product composition, loading configuration, and irradiator design on dose distribution.4.4 Complement or Supplement to Dosimetry—Dose calculations may be used to establish a detailed understanding of dose distribution, providing a spatial resolution not obtainable through measurement. Calculations may be used to reduce the number of dosimeters required to characterize a procedure or process (for example, dose mapping).4.5 Alternative to Dosimetry—Dose calculations may be used when dosimetry is impractical (for example, granular materials, materials with complex geometries, material contained in a package where dosimetry is not practical or possible).4.6 Facility Design—Dose calculations are often used in the design of a new irradiator and can be used to help optimize dose distribution in an existing facility or radiation process. The use of modeling in irradiator design can be found in Refs (2-7).4.7 Validation—The validation of the model should be done through comparison with reliable and traceable dosimetric measurements. The purpose of validation is to demonstrate that the mathematical method makes reliable predictions of dose and other transport quantities. Validation compares predictions or theory to the results of an appropriate experiment. The degree of validation is commensurate with the application. Guidance is given in the documents referenced in Annex A2.4.8 Verification—Verification is the confirmation of the mathematical correctness of a computer implementation of a mathematical method. This can be done, for example, by comparing numerical results with known analytic solutions or with other computer codes that have been previously verified. Verification should be done to ensure that the simulation is appropriate for the intended application. Refer to 3.1.24.NOTE 2: Certain applications of the mathematical model deal with Operational Qualification (OQ), Performance Qualification (PQ) and process control in radiation processing such as the sterilization of healthcare products. The application and use of the mathematical model in these applications may have to meet regulatory requirements. Refer to Section 6 for prerequisites for application of a mathematical method and Section 8 for requirements before routine use of the mathematical method.4.9 Uncertainty—An absorbed dose prediction should be accompanied by an estimate of overall uncertainty, as it is with absorbed-dose measurement (refer to ISO/ASTM 51707 and JCGM100:2008 and JCGM200:2012). In many cases, absorbed-dose measurement helps to establish the uncertainty in the dose calculation.4.10 This guide should not be used as the only reference in the selection and use of mathematical models. The user is encouraged to contact individuals who are experienced in mathematical modelling and to read the relevant publications in order to select the best tool for their application. Radiation processing is an evolving field and the references cited in the annotated examples of Annex A6 are representative of the various published applications. Where a method is validated with dosimetry, it becomes a benchmark for that particular application.1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose.1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document.1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV.1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods.1.5 This guide is limited to the use of general purpose software packages for the calculation of the transport of charged or uncharged particles and photons, or both, from various types of sources of ionizing radiation. This standard is limited to the use of these software packages or other mathematical methods for the determination of spatial dose distributions for photons emitted following the decay of 137Cs or 60Co, for energetic electrons from particle accelerators, or for X-rays generated by electron accelerators.1.6 This guide assists the user in determining if mathematical methods are a useful tool. This guide may assist the user in selecting an appropriate method for calculating absorbed dose. The user must determine whether any of these mathematical methods are appropriate for the solution to their specific application and what, if any, software to apply.NOTE 1: The user is urged to apply these predictive techniques while being aware of the need for experience and also the inherent limitations of both the method and the available software. Information pertaining to availability and updates to codes for modeling radiation transport, courses, workshops and meetings can be found in Annex A1. For a basic understanding of radiation physics and a brief overview of method selection, refer to Annex A3.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The procedures in this practice support the determination of the burn hazard potential for a heated surface. These procedures provide an estimate of the maximum skin contact temperature and must be used in conjunction with Guide C1055 to evaluate the surface hazard potential.5.2 The two procedures outlined herein are both based upon the same heat transfer principles. Method A uses a mathematical model to predict the contact temperature, while Method B uses a plastic rubber probe having similar heat transfer characteristics to the human finger to “measure” the contact temperature on real systems.5.3 These procedures serve as an estimate for the skin contact temperatures which might occur for the “average” individual. Unusual conditions of exposure, incorrect design assumptions, subject health conditions, or unforeseen operating conditions will potentially negate the validity of the estimations.5.4 These procedures are limited to direct contact exposure only. Conditions of personal exposure to periods of high ambient temperatures, direct flame exposure, or high radiant fluxes will potentially cause human injury in periods other than determined herein. Evaluation of exposures other than direct contact are beyond the scope of this practice.5.5 Cold Surface Exposure—No consensus criteria exists for the destruction of skin cells by freezing. If, at some future time, such criteria are developed, extrapolation of the techniques presented here will serve as a basis for cold surface exposure evaluation.1.1 This practice covers a procedure for evaluating the skin contact temperature for heated surfaces. Two complimentary procedures are presented. The first is a purely mathematical approximation that is used during design or for worst case evaluation. The second method describes the thermesthesiometer, an instrument that analogues the human sensory mechanism and is only used on operating systems.NOTE 1: Both procedures listed herein are intended for use with Guide C1055. When used in conjunction with that guide, these procedures can determine the burn hazard potential for a heated surface.1.2 A bibliography of human burn evaluation studies and surface hazard measurement is provided in the References at the end of Guide C1055. Thermesthesiometer and mathematical modeling references are provided in the References at the end of this practice (1-5).21.3 This practice addresses the skin contact temperature determination for passive heated surfaces only. The analysis procedures contained herein are not applicable to chemical, electrical, or other similar hazards that provide a heat generation source at the location of contact.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Lubricating oils can be formulated with additives, which can act as detergents, anti-oxidants, anti-wear agents, and so forth. Some additives can contain one or more of calcium, copper, magnesium, phosphorus, sulfur, and zinc. This test method can be used to determine if the oils, additives, and additive packages meet specification with respect to content of these elements.4.2 Several additive elements and their compounds are added to the lubricating oils to give beneficial performance (Table 3).4.3 This test method can also be used to determine if lubricating oils, additives, and additive packages meet specification with respect to chlorine concentration. In this context, specification can refer to contamination.4.4 This test method is not intended for use on samples that contain some component that significantly interferes with the analysis of the elements specified in the scope.4.5 This test method can complement other test methods for lube oils and additives, including Test Methods D4628, D4927, D4951, and D5185.1.1 This test method covers the determination of calcium, chlorine, copper, magnesium, phosphorus, sulfur, and zinc in unused lubricating oils, additives, and additive packages by wavelength dispersive X-ray fluorescence spectrometry. Matrix effects are handled with mathematical corrections.1.2 For each element, the upper limit of the concentration range covered by this test method is defined by the highest concentration listed in Table 1. Samples containing higher concentrations can be analyzed following dilution.1.3 For each element, the lower limit of the concentration range covered by this test method can be estimated by the limit of detection (LOD)2 (see also 40 CFR 136 Appendix B) or limit of quantification (LOQ),2 both of which can be estimated from Sr, the repeatability standard deviation. LOD and LOQ values, determined from results obtained in the interlaboratory study on precision, are listed in Table 2.1.3.1 LOD and LOQ are not intrinsic constants of this test method. LOD and LOQ depend upon the precision attainable by a laboratory when using this test method.1.4 This test method uses regression software to determine calibration parameters, which can include influence coefficients (that is, interelement effect coefficients) (Guide E1361), herein referenced as alphas. Alphas can also be determined from theory using relevant software.1.5 Setup of this test method is intended for persons trained in the practice of X-ray spectrometry. Following setup, this test method can be used routinely.1.6 The values stated in either SI units or angstrom (Å) units are to be regarded separately as standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
3 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页