微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

Ethylene oxide is a major raw material used in the manufacture of numerous other bulk industrial chemicals, and is also used as a sterilizing agent.This test method provides a means of evaluating exposure to ethylene oxide in the working environment. Examples of recommended occupational exposure limits (OELs) include: a U.S. Occupational Safety and Health Administration (OSHA) personal exposure limit (PEL) of 1 ppm(v) (8-h TWA) and an American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) of 1 ppm(v).1.1 This test method describes the determination of ethylene oxide (oxirane) in workplace atmospheres using charcoal tube sampling methodology. Subsequent analysis is carried out by gas chromatography.1.2 This test method is compatible with low flow rate personal sampling equipment: 10 to 200 mL/min. It can be used for personal or area monitoring.1.3 The sampling method develops a time-weighted averaged (TWA) sample and can be used to determine short-term excursions (STE).1.4 The applicable concentration range for the TWA sample is from 0.3 to 20 ppm(v).1.5 The applicable concentration range for the STE sample ranges from 1 to 1000 ppm(v).1.6 The values stated in SI units shall be regarded as the standard. Inch-pound units are provided for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (For more specific safety precautionary statements see Section 9 and 10.2.3 and 11.1.3.)

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 VOCs are emitted into ambient, indoor, and workplace air from many different sources. These VOCs are of interest for a variety of reasons including participation in atmospheric chemistry and contributing to air toxics with their associated acute or chronic health impacts.5.2 Canisters are particularly well suited for the collection and analysis of very volatile and volatile organic compounds because they collect whole gas samples.5.3 Chemically stable selected VOCs have been successfully collected in passivated stainless steel canisters. Collection of atmospheric samples in canisters provides for: (1) convenient integration of air samples over a specific time period (for example, 8 to 24 h), (2) remote sampling and central laboratory analysis, (3) ease of storing and shipping samples, (4) unattended sample collection, (5) analysis of samples from multiple sites with one analytical system, (6) dilution or additional sample concentration to keep the sample size introduced into the analytical instrument within the calibration range, (7) collection of sufficient sample volume to allow assessment of measurement precision through replicate analyses of the same sample by one or several analytical systems, (8) sample collection using a vacuum regulator flow controller if electricity is not available, and (9) grab sample collection for survey or screening purposes.5.4 Interior surfaces of the canisters may be treated by any of several proprietary passivation processes including an electropolishing process to remove or cover reactive metal sites on the interior surface of the vessel and a fused silica coating process.5.5 For this test method, VOCs are defined as organic compounds that can be quantitatively recovered from the canisters having a vapor pressure greater than 10-2 kPa at 25ºC (see Table 1 for examples).5.6 Target compound polarity is also a factor in compound recovery. Aliphatic and aromatic hydrocarbons from C1 to C13 have been successfully measured with this test method but are not listed in Table 1 (21). Higher polarity target compounds may interact with the canister surface or humidity on the canister surface causing their apparent vapor pressure to decrease. Polar VOCs such as ethers and esters have been successfully measured by this test method and are listed in Table 1.5.7 Recovery studies shall be conducted on VOCs not listed in Table 1 before expanding the use of this test method to include these additional compounds. Recovery from humidified spiked canisters shall agree with the spiked amount by ±30 %. The laboratory shall be responsible for verifying the relevant method performance characteristics for each compound added to the analyte list as agreed with their customer(s). The laboratory shall retain records of verification and make them available to customers upon request. Added VOCs (that is, those not listed in Table 1) shall be clearly identified in customer reports1.1 This test method describes a procedure for sampling and analysis of selected volatile organic compounds (VOCs) in ambient, indoor, and workplace atmospheres. The test method is based on the collection of whole air samples in stainless steel canisters with specially treated (passivated) interior surfaces.1.2 For sample analysis, a portion of the sample is subsequently removed from the canister and the collected VOCs are selectively concentrated by adsorption or condensation onto a trap, subsequently released by thermal desorption, separated by gas chromatography, and measured by a low resolution mass spectrometric detector. This test method describes procedures for sampling into canisters to final pressures both above and below atmospheric pressure (respectively referred to as pressurized and subatmospheric pressure sampling).21.3 This test method is applicable to specific VOCs that have been determined to be stable when stored in canisters (see Table 1). Numerous compounds, many of which are chlorinated VOCs, have been successfully tested for storage stability in pressurized canisters (1-4).3 Information on storage stability is also available for polar compounds (5-7). This test method has been documented for the compounds listed in Table 1 and performance results apply only to those compounds. A laboratory may determine other VOCs by this test method after completion of verification studies that include measurement of recovery as specified in 5.7 and that are as extensive as required to meet the performance needs of the customer and the given application.1.4 The procedure for collecting the sample involves the use of inlet lines, air filters, flow rate regulators for obtaining time-integrated samples, and in the case of pressurized samples, an air pump. Typical long-term fixed location canister samplers have been designed to automatically start and stop the sample collection process using electronically actuated valves and timers (8-10). Temporary or short-term canister samplers may require the user to manually start and stop sample collection. A weatherproof shelter may be required if the sampler is used outdoors. For the purposes of this test method, refer to Practice D1357 for practices and planning ambient sampling events.1.5 The organic compounds that have been successfully measured single-digit micrograms per cubic metre (µg/m3 (or single digit parts-per-billion by volume (ppbv)) concentration with this test method are listed in order of approximate retention time in Table 1. The test method is applicable to VOC concentrations ranging from the detection limit to approximately 1000 µg/m3 (300 ppbv). Above this concentration, smaller sample aliquots of sample gas may be analyzed or samples can be diluted with dry ultra-high-purity nitrogen or air or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Safety practices should be part of the user’s SOP manual.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method provides an analytical procedure for measuring formaldehyde and other carbonyl compounds in indoor, workplace, ambient air or for emission testing.1.1 This test method presents a procedure for the determination of formaldehyde (HCHO) and other carbonyl compounds (aldehydes and ketones) in air. Other carbonyl compounds that have been successfully quantified by this method include acetaldehyde, acetone, propanal (propionaldehyde), 2-butanone (methyl ethyl ketone), butyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, hexanal, and 2,5-dimethylbenzaldehyde.1.2 This test method involves drawing air through a cartridge containing silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) reagent. Carbonyl compounds readily form stable derivatives with the acidified DNPH reagent. The DNPH derivatives are analyzed for parent aldehydes and ketones using high performance liquid chromatography (HPLC) or ultra-high performance liquid chromatography (UHPLC). UHPLC systems use higher pressures and smaller particle sizes in columns compared to HPLC systems. The sampling procedure is a modification of U.S. EPA Method TO-11A (see 2.2).1.3 This test method is based on the reaction of carbonyl compounds with DNPH in the presence of an acid to form stable derivatives according to the reaction shown in Fig. 1, (where: both R and R1 are alkyl or aromatic groups (ketones), or either, or both R or R1 is a hydrogen atom (aldehydes)). The determination of formaldehyde and other carbonyl compounds, as DNPH derivatives, is similar to that of U.S. EPA Method TO-11A in that it uses HPLC or UHPLC for separation of carbonyl compounds followed by UV adsorption or photodiode array detection. This test method exceeds the stated applicability of TO-11A to include other carbonyl compounds that can be determined as stated in 10.2.4. This test method is suitable for determination of formaldehyde and other carbonyl compounds in the airborne concentration range from approximately 10 ppbv/v (12 μg/m3), requires sampling for 1 h at 1 L/min) to 1 ppmv/v (1.2 mg/m3). Lower concentrations in air may be determined using higher sampling volume and with control of contamination, appropriate selection of flow rate and sampling duration.FIG. 1 Reaction of Carbonyl Compounds1.4 The sampling method gives a time-weighted average (TWA) sample. It can be used for long-term (1 to 24 h) or short-term (5 to 60 min) sampling of air for formaldehyde. Shorter sampling times or low flow rates will result in higher detection limits and may result in greater variation in co-located sampler results. Tests should be performed over a duration and a flow rate that allows the data quality objective of the project to be achieved. Sample times for other carbonyls, such as acetaldehyde, may be limited to short term (1).2 The data provides total concentrations of carbonyl compounds from which time weighted average concentrations can be calculated.1.5 This test method instructs the user on how to prepare sampling cartridges from commercially available chromatographic grade silica gel cartridges3 by the application of acidified DNPH to each cartridge.1.6 The sampling flow rate, as described in this test method, has been validated for sampling rates up to 1.5 L/min for formaldehyde. This flow rate limitation is principally due to the high pressure drop (>8 kPa at 1.0 L/min) across user prepared silica gel cartridges which have a particle size of 55 to 105 µm. These cartridges are not generally compatible with battery-powered pumps used in personal sampling equipment (for example, those used by industrial hygienists).1.7 Alternatively, pre-coated DNPH silica gel cartridges are commercially available and may be substituted provided they can be demonstrated to meet blank and analyte trapping acceptance criteria (2). Some of these use silica gel of a larger particle size that results in a lower pressure drop across the cartridge. These low pressure drop cartridges may be more suitable for sampling air using battery-powered personal sampling pumps.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Use of this Methodology: 5.1.1 This guide provides a compendium of information on methods to use fracture data, fatigue life models, and statistical techniques to estimate the structural fatigue durability of an implantable medical device under anticipated in vivo loading modes. The methodology for high-cycle fatigue assessment relies on hyper-physiological tests intended to cause device fractures. Using the FtF methodology, fractures should not be avoided during testing; instead they provide the information required to statistically assess device longevity under a wide variety of physiological and hyper-physiological test conditions.5.1.2 Through evaluation of fracture locations, the geometries after fractures, and the use conditions of the device, this guide may be used to help assess device safety.5.1.3 This guide may be used to help assess differences in fatigue life between different devices or device histories. The effects on fatigue life due to changes to a device’s geometry, processing, or material may be assessed using this guide.5.1.4 Users of this guide must keep in mind that bench tests are simulations of in-use conditions. Adherence to this guide may not guarantee that results translate to individual clinical scenarios. Therefore, in assessing a device’s fatigue performance, the results from Fatigue to Fracture testing should be reviewed in combination with other available data, such as animal studies, clinical experience, and computational simulations.5.2 Significance of this Methodology: 5.2.1 While the FtF methodology applies only to bench tests, it can provide insights into device behavior that would not necessarily be apparent in clinical studies that typically focus on patient outcomes. After appropriate boundary conditions such as loadings, fixturing, and materials have been determined, the FtF methodology can provide extensive information on the expected longevity of a device in a period 10 to 1000 times shorter than a real-time clinical study.5.2.2 FtF is informative in characterizing device behavior over a wide range of loads and cycles. This is especially valuable when the in vivo loading mode is understood but the load magnitude and cycle requirements are not well known or when characterizing device performance over a wide range of patient lifetimes, activity levels, and physiological states is desired.5.2.3 In FtF, test loads greater than the devices’ expected use conditions are used. Thus, factors of safety can be measured relative to expected in vivo use conditions in both loading/deformation severity and number of cycles.5.2.4 In FtF, the nature and location of fractures observed as a function of load can help provide insights into the device response to the applied loading. The identified primary and follow-on fracture locations and modes may be used to assess the credibility of device computational models, as well as to evaluate potential impacts on clinical safety and efficacy, especially post-fracture.5.2.5 The FtF methodology can quickly and reliably assess the impact of changes in processes, materials, or small changes in geometry on in vitro fatigue life. These assessments with respect to fracture can be quantified and used as part of validating design changes, demonstrating that the device meets product specifications, or as part of guiding design improvements.5.2.6 FtF testing can often be completed in a shorter period of time than test-to-success testing since the FtF tests are typically terminated at a smaller number of cycles. Specifically, when extrapolation in cycles is appropriate, comparisons of the loads or the frequency of fracture at a lower number of cycles can provide a useful measure of equivalence.1.1 This guide is intended to provide an experimental methodology to assess and determine the structural fatigue life of implantable cardiovascular medical devices.1.2 This guide is also intended to provide methodologies to determine statistical bounds on fatigue life at in vivo use conditions using measured fatigue life derived in whole or in part from hyper-physiological testing to fracture.1.3 This guide may be used to assess or characterize device durability during design development and for testing to device product specifications.1.4 Fretting, wear, creep-fatigue, and absorbable materials are outside the scope of this guide, though elements of this guide may be applicable.1.5 As a guide, this document provides direction but does not recommend a specific course of action. It is intended to increase the awareness of information and approaches. This guide is not a test method. This guide does not establish a standard practice to follow in all cases.1.6 This guide is meant as a complement to other regulatory and device-specific guidance documents or standards and it does not supersede the recommendations or requirements of such documents.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This test method covers personal or area measurements of formaldehyde in indoor air in the range from 0.01 to 17 mg/m (0.008 to 14 ppm v/v). Formaldehyde is collected in a passive diffusion sampler, and analyzed by a colorimetric method using 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH). The recommended sampling time is 15 min to 24 h. 1.2 The lower quantification limit of the MBTH test method is 0.03 [mu]g of formaldehyde per millilitre of absorbing solution used. A formaldehyde concentration of 0.01 mg/m (0.008 ppm v/v) can be determined in indoor air, based on using an aliquot of 5 mL of absorbing solution in the prescribed sampler for a period of 24 h and observing a minimum difference of 0.05 absorbance units from the blank when using spectrophotometer cells of path length 1 cm. 1.3 Water soluble aliphatic aldehydes give a significant positive interference (1, 2) nearly equal to formaldehyde on a molar basis. Further information on estimating potential and actual interferences from aliphatic aldehydes may be found in 6.2 and 10.1.7. Most other compounds which react to produce colored products are not gaseous or water soluble and, consequently, should not interfere. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Notes 1 and 2.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method for the chemical analysis of titanium and titanium alloys is primarily intended to test material for compliance with specifications of chemical composition such as those under the jurisdiction of ASTM Committee B10. It may also be used to test compliance with other specifications that are compatible with the test method.5.2 It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely and that the work will be performed in a properly equipped laboratory.5.3 This is a performance-based test method that relies more on the demonstrated quality of the test result than on strict adherence to specific procedural steps. It is expected that laboratories using this test method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory, the specific reference materials used, and performance acceptance criteria. It is also expected that, when applicable, each laboratory will participate in proficiency test programs, such as described in Practice E2027, and that the results from the participating laboratory will be satisfactory.1.1 This method describes the analysis of titanium and titanium alloys, such as specified by committee B10, by inductively coupled plasma atomic emission spectrometry (ICP-AES) and direct current plasma atomic emission spectrometry (DCP-AES) for the following elements:Element ApplicationRange (wt.%) QuantitativeRange (wt.%)Aluminum 0–8 0.009 to 8.0Boron 0–0.04 0.0008 to 0.01Cobalt 0-1 0.006 to 0.1Chromium 0–5 0.005 to 4.0Copper 0–0.6 0.004 to 0.5Iron 0–3 0.004 to 3.0Manganese 0–0.04 0.003 to 0.01Molybdenum 0–8 0.004 to 6.0Nickel 0–1 0.001 to 1.0Niobium 0-6 0.008 to 0.1Palladium 0-0.3 0.02 to 0.20Ruthenium 0-0.5 0.004 to 0.10Silicon 0–0.5 0.02 to 0.4Tantalum 0-1 0.01 to 0.10Tin 0–4 0.02 to 3.0Tungsten 0-5 0.01 to 0.10Vanadium 0–15 0.01 to 15.0Yttrium 0–0.04 0.001 to 0.004Zirconium 0–5 0.003 to 4.01.2 This test method has been interlaboratory tested for the elements and ranges specified in the quantitative range part of the table in 1.1. It may be possible to extend this test method to other elements or broader mass fraction ranges as shown in the application range part of the table above provided that test method validation is performed that includes evaluation of method sensitivity, precision, and bias. Additionally, the validation study shall evaluate the acceptability of sample preparation methodology using reference materials or spike recoveries, or both. Guide E2857 provides information on validation of analytical methods for alloy analysis.1.3 Because of the lack of certified reference materials (CRMs) containing bismuth, hafnium, and magnesium, these elements were not included in the scope or the interlaboratory study (ILS). It may be possible to extend the scope of this test method to include these elements provided that method validation includes the evaluation of method sensitivity, precision, and bias during the development of the testing method.1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety hazards statements are given in Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The static chambers have several different applications:4.1.1 The static chambers can be used to compare the susceptibility of different materials to the colonization and amplification of various microorganisms under defined conditions.4.1.2 Chambers operated at high relative humidities may be used to perform worst case scenario screening tests on materials by providing an atmosphere where environmental conditions may be favorable for microbial growth.4.1.3 Use of multiple chambers with different environmental parameters, such as a range of relative humidities, permits the evaluation of multiple microenvironments and allows investigation of materials under differing environmental conditions.4.1.4 Drying requirements for wetted materials may also be investigated. This information may be relevant for determining material resistance to microbial growth after becoming wet. These conditions may simulate those where materials are subjected to water incursion through leaks as well as during remediation of a building after a fire.4.1.5 Growth rates of microorganisms on the material may also be investigated. Once it has been established that organisms are able to grow on a particular material under defined conditions, investigations into the rate of organism growth may be performed. These evaluations provide base line information and can be used to evaluate methods to limit or contain amplification of microorganisms.4.2 These techniques should be performed by personnel with training in microbiology. The individual must be competent in the use of sterile technique, which is critical to exclude external contamination of materials.1.1 Many different types of microorganisms (for example, bacteria, fungi, viruses, algae) can occupy indoor spaces. Materials that support microbial growth are potential indoor sources of biocontaminants (for example, spores and toxins) that can become airborne indoor biopollutants. This guide describes a simple, relatively cost effective approach to evaluating the ability of a variety of materials to support microbial growth using a small chamber method.1.2 This guide is intended to assist groups in the development of specific test methods for a definite material or groups of materials.1.3 Static chambers have certain limitations. Usually, only small samples of indoor materials can be evaluated. Care must be taken that these samples are representative of the materials being tested so that a true evaluation of the material is performed.1.4 Static chambers provide controlled laboratory microenvironment conditions. These chambers are not intended to duplicate room conditions, and care must be taken when interpreting the results. Static chambers are not a substitute for dynamic chambers or field studies.1.5 A variety of microorganisms, specifically bacteria and fungi, can be evaluated using these chambers. This guide is not intended to provide human health effect data. However, organisms of clinical interest, such as those described as potentially allergenic, may be studied using this approach.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification is intended to provide a callout system for polyethylene utilizing specimen preparation procedures and test methods based primarily on ISO standards. The classification system provides for the identification of unfilled polyethylene plastics molding and extrusion materials, with a melt index of <1g/10 min, in such a manner that the supplier and the user agree on the acceptability of different commercial lots or shipments. The specification also lists the requirements that would allow for the use of recycled polyethylene materials. These requirements include the colour and form of the material.1.1 This classification system provides for the identification of unfilled polyethylene plastics molding and extrusion materials, with a melt index of <1g/10 min, in such a manner that the supplier and the user agree on the acceptability of different commercial lots or shipments. The tests involved in this specification are intended to provide information for identifying materials in accordance with the groups, classes, and grades covered. It is not the function of this classification system to provide specific engineering data for design purposes.1.2 This classification system allows for the use of recycled polyethylene materials provided that the requirements as stated in this classification system are met. The proportions of recycled material used, as well as the nature and amount of any contaminant, however, will not be covered in this specification.NOTE 1: See Guide D7209 for information and definitions related to recycled plastics.1.3 The properties included in this classification system are those required to identify the compositions covered. There may be other requirements necessary to identify particular characteristics important to specialized applications. These shall be agreed upon between the user and the supplier by using the suffixes given in Section 5.1.4 This classification system and subsequent line callout (specifications) are intended to provide a means of calling out plastic materials used in the fabrication of end items or parts. It is not intended for the selection of materials. Material selection should be made by those having expertise in the plastic field after careful consideration of the design and the performance requirements of the part, the environment to which it will be exposed, the fabrication process to be employed, the costs involved, and the inherent properties of the material other than those covered by this classification system.1.5 The values stated in SI units are regarded as the standard.1.6 The following precautionary caveat pertains to the test method portion only, Section 12 of this classification system. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 For information regarding plastic pipe materials, see Specification D3350. For information regarding wire and cable materials, see Specification D1248. For information regarding classification of PE molding and extrusion materials using ASTM test methods, see Specification D4976.NOTE 2: There is no known ISO equivalent to this standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers polypropylene materials suitable for injection molding and extrusion. Polymers consist of polypropylene homopolymers, polypropylene copolymers, and polypropylene-elastomer compounds produced with or without the addition of impact modifiers (ethylene-propylene rubber, polyisobutylene rubber, and butyl rubber, and so forth), colorants, stabilizers, lubricants, fillers, or reinforcements. Unreinforced polypropylene materials are classified into groups in accordance with basic composition. These groups are subdivided into classes and grades. The plastic composition shall be uniform and shall conform to the requirements specified. Tests shall be performed to determine the properties of the material in accordance with the following test methods: flow rate; tensile strength; flexural modulus; Charpy impact resistance; falling mass impact resistance; temperature of deflection under load; and multiaxial impact ductile-brittle transition temperature.1.1 This specification covers polypropylene materials suitable for injection molding and extrusion. Polymers consist of polypropylene homopolymers, polypropylene copolymers, and polypropylene-elastomer compounds produced with or without the addition of impact modifiers (ethylene-propylene rubber, polyisobutylene rubber, and butyl rubber, and so forth), colorants, stabilizers, lubricants, fillers, or reinforcements.1.2 This specification allows for the use of those polypropylene materials that can be recycled, reconstituted, and reground, provided that the following conditions are met:1.2.1 The requirements as stated in this specification and other ISO guidelines pertaining to these types of materials are met, and1.2.2 The material has not been modified in any way to alter its conformance to food contact regulations or similar requirements.1.3 The proportions of recycled, reconstituted, and regrind material used, as well as the nature and the amount of any contaminant, cannot be practically covered in this specification. It is the responsibility of the supplier and buyer of recycled, reconstituted, and regrind materials to ensure compliance.1.4 The properties included in this classification system are those required to identify the compositions covered. Other requirements necessary to identify particular characteristics important to specialized applications can be specified by using the suffixes as given in Section 5 and those in Classification System D4000.1.5 This classification system and specification are intended to provide a means of calling out polypropylene materials used in the fabrication of end items or parts. It is not intended for the selection of materials. Material selection can be made by those having expertise in the plastic field only after careful consideration of the design and the performance required of the part, the environment to which it will be exposed, the fabrication process to be employed, the costs involved, and the inherent properties of the material other than those covered by this specification.1.6 The values stated in SI units are to be regarded as the standard.1.7 The following precautionary caveat pertains only to the test methods portion, Section 13, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This specification is similar to both ISO 1873-1 and ISO 1873-2, but to different degrees. This specification resembles ISO 1873-1 in title only. The content is significantly different. This specification and ISO 1873-2 differ in approach or detail; data obtained using either are technically equivalent.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 The purpose of this guide is to provide guidance in determining site-specific conversion factors for translating between dose limits and residual radioactive contamination levels on equipment, structures, and land areas. This guide does not endorse specific levels of allowable residual radioactive contamination, nor does it provide a methodology for population dose calculations. 1.2 Standards prescribing dose limits for decommissioned nuclear facilities or sites and/or private properties contaminated with radioactive materials are necessary to identify decommissioning methods, guide cleanup (remedial action) efforts, determine cleanup costs, identify the amount of radioactive waste to be disposed, and protect the public. Such standards, however, are not yet available for all types of nuclear facilities, sites, or properties. Regulatory Guide 1.86 of the U.S. Nuclear Regulatory Commission (NRC) (1), as well as specific promulgations of the Environmental Protection Agency (EPA) and the Department of Energy (DOE), provide some specific guidance. 1.3 This guide is not intended to establish these federal policies. They will be promulgated by the EPA and other federal agencies. Rather, it is to serve as a guide to acceptable methodology for translating the yet to be determined dose limits into allowable levels of residual radioactive materials that can be left at a site following decommissioning. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice is intended for the collection of airborne fungal spores or fragments, or both, using inertial impaction.4.2 It is the responsibility of the user to assure that they are in compliance with all local, state and federal regulations governing the inspection of buildings for fungal colonization and the collection of associated samples.4.3 This practice is intended to provide the user with a basic understanding of the equipment, materials and instructions necessary to effectively collect air samples using an inertial impactor.4.4 This practice, when properly executed, may also be used for the evaluation of other types of airborne particles with the capturing characteristics appropriate for inertial impactor, and for which appropriate analytical methods exist. Such particles may include dust mites, skin cells, pollen, and other materials.1.1 The purpose of this practice is to describe procedures for the collection of airborne fungal spores or fragments, or both, using inertial impaction sampling techniques.1.2 This practice is not intended to limit the user from the collection of other airborne particulates that may be of interest and captured through this technique.1.3 This practice presumes that the user has a fundamental understanding of field investigative techniques related to the scientific process, and sampling plan development and implementation. It is important to establish the related hypothesis to be tested and the supporting analytical methodology needed in order to identify the sampling media to be used and the laboratory conditions for analysis.1.4 This practice does not address the development of a formal hypothesis or the establishment of appropriate and defensible investigation and sampling objectives. It is presumed the investigator has the experience and knowledge base to address these issues.1.5 This practice does not provide the user sufficient information to allow for interpretation of the analytical results from sample collection. It is the user's responsibility to seek or obtain the information and knowledge necessary to interpret the sample results reported by the laboratory.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
18 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页