微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

The thickness of a coating is often critical to its performance.For some coating-substrate combinations, the interference microscope method is a reliable method for measuring coating thickness.This test method is suitable for specification acceptance.1.1 This test method covers the measurement of the thickness of transparent metal oxide and metallic coatings by utilizing a double-beam interference microscope.1.2 The test method requires that the specimen surface or surfaces be sufficiently mirrorlike to form recognizable fringes.1.3 This test method can be used nondestructively to measure 1 to 10μ m thick transparent coatings, such as anodic coatings on aluminum. The test method is used destructively for 0.1 to 10 μm thick opaque coatings by stripping a portion of the coating and measuring the step height between the coating and the exposed substrate. The stripping method can also be used to measure 0.2 to 10 μm thick anodic coatings on aluminum.1.4 The test method is usable as a reference method for the measurement of the thickness of the anodic film on aluminum or of metallic coatings when the technique includes complete stripping of a portion of the coating without attack of the substrate. For anodic films on aluminum, the thickness must be greater than 0.4 μm; the uncertainty can be as great as 0.2 μm. For metallic coatings, the thickness must be greater than 0.25 μm; the uncertainty can be as great as 0.1 μm.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The purpose of this test method is to define a procedure for testing components being considered for installation into a high-purity gas distribution system. Application of this test method is expected to yield comparable data among components tested for purposes of qualification for this installation.1.1 This test method covers the testing of interior surfaces of components such as tubing, fittings, and valves for surface morphology.1.2 This test method applies to all surfaces of tubing, connectors, regulators, valves, and any metal component, regardless of size.1.3 Limitations: 1.3.1 This methodology assumes a SEM operator skill level typically achieved over a 12-month period.1.3.2 This test method shall be limited to the assessment of pits, stringer, tears, grooves, scratches, inclusions, stepped grain boundaries, and other surface anomalies. However, stains and particles that may be produced during specimen preparation should be excluded in the assessment of anomalies.1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Specific hazard statements are given in Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Proper use of this practice can yield calibrated magnifications with precision of 5 % or better within a magnification range of from 10 to 50 000X.4.2 The use of calibration specimens traceable to international/national standards, such as NIST-SRM 484, with this practice will yield magnifications accurate to better than 5 % over the calibrated range of operating conditions.4.3 The accuracy of the calibrated magnifications, or dimensional measurements, will be poorer than the accuracy of the calibration specimen used with this practice.4.4 For accuracy approaching that of the calibration specimen this practice must be applied with the identical operating conditions (accelerating voltage, working distance and magnification) used to image the specimens of interest.4.5 It is incumbent upon each facility using this practice to define the standard range of magnification and operating conditions as well as the desired accuracy for which this practice will be applied. The standard operating conditions must include those parameters which the operator can control including: accelerating voltage, working distance, magnification, and imaging mode.1.1 This practice covers general procedures necessary for the calibration of magnification of scanning electron microscopes. The relationship between true magnification and indicated magnification is a complicated function of operating conditions.2 Therefore, this practice must be applied to each set of standard operating conditions to be used.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Different electroplating systems can be corroded under the same conditions for the same length of time. Differences in the average values of the radius or half-width or of penetration into an underlying metal layer are significant measures of the relative corrosion resistance of the systems. Thus, if the pit radii are substantially higher on samples with a given electroplating system, when compared to other systems, a tendency for earlier failure of the former by formation of visible pits is indicated. If penetration into the semi-bright nickel layer is substantially higher, a tendency for earlier failure by corrosion of basis metal is evident.1.1 This test method provides a means for measuring the average dimensions and number of corrosion sites in an electroplated decorative nickel plus chromium or copper plus nickel plus chromium coating on steel after the coating has been subjected to corrosion tests. This test method is useful for comparing the relative corrosion resistances of different electroplating systems and for comparing the relative corrosivities of different corrosive environments. The numbers and sizes of corrosion sites are related to deterioration of appearance. Penetration of the electroplated coatings leads to appearance of basis metal corrosion products.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The quality and performance of an article of glassware may be affected not only by the presence of residual stresses due to heat treatment above the strain point in the ware, but also by additional residual stresses caused by differences in thermal expansion between the glass substrate, and either cord, fired-on vitreous enamel, or ACL decoration.5.2 The effects of those additional residual cord, enamel, or ACL stresses and the resulting performance of such items may be evaluated by performance test procedures. Such evaluations of enamel or ACL stresses may also be accomplished through the determination of appropriate physical properties of the decoration and matrix glass, or by analytical methods.5.3 This test method offers a direct and convenient means of determining the magnitudes and spatial distributions of residual stress systems in glass substrates. The test method is simple, convenient, and quantitatively accurate.5.4 This test method is useful in evaluating the degree of compatibility between the coefficient of thermal expansion of an enamel or ACL applied to a glass substrate.1.1 This test method covers the determination of residual stresses in a transparent glass matrix by means of a polarizing microscope using null or retardation compensation procedures.1.2 Such residual stress determinations are of importance in evaluating the nature and degree of residual stresses present in glass matrixes due to cord, or the degree of fit, or suitability of a particular combination of glass matrix and enamel, or applied color label (ACL).1.3 The retardation compensation method of optically determining and evaluating enamel or ACL residual stress systems offers distinct advantages over methods requiring physical property measurements or ware performance tests due to its simplicity, reproducibility, and precision.1.4 Limitations—This test method is based on the stress-optical retardation compensation principle, and is therefore applicable only to transparent glass substrates, and not to opaque glass systems.1.5 Due to the possibility of additional residual stresses produced by ion exchange between glasses of different compositions, some uncertainty may be introduced in the value of the stress optical coefficient in the point of interest due to a lack of accurate knowledge of chemical composition in the areas of interest.1.6 This test method is quantitatively applicable to and valid only for those applications where such significant ion exchange is not a factor, and stress optical coefficients are known or determinable.1.7 The extent of the ion exchange process, and hence the magnitudes of the residual stresses produced due to ion exchange will depend on the exchange process parameters. The residual stress determinations made on systems in which ion exchange has occurred should be interpreted with those dependencies in mind.1.8 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers a procedure for the nondestructive measurement of the thickness of transparent anodic coatings on aluminum articles by means of the light-section microscope. This method may also be used to measure the thickness of any transparent coating on an opaque reflective surface.1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM E210-63(2016) Standard Specification for Microscope Objective Thread (Withdrawn 2022) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This specification covers the basic and design forms, lead, classification, and nominal size of the screw thread used for mounting the objective assembly to the body or lens turret of microscopes. It is based on, and intended to be interchangeable with, the screw thread introduced and adopted many years ago by the Royal Microscopical Society of Great Britain, generally known as the "RMS thread" and now almost universally accepted as the basic standard for microscope objective mountings.1.1 This standard covers the screw thread used for mounting the objective assembly to the body or lens turret of microscopes. It is based on, and intended to be interchangeable with, the screw thread introduced and adopted many years ago by the Royal Microscopical Society of Great Britain, generally known as the “RMS thread” and now almost universally accepted as the basic standard for microscope objective mountings. Formal recognition, however, has been extremely limited.1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is established to cover automated SEM/EDX-based procedures for:5.1.1 Rating the inclusion content of steels based on procedures listed in Standards E45 and E1245, with the significant difference that the composition of the individual inclusions, as determined by X-ray analysis, is utilized to sort them into chemical classes.5.1.2 Determining the number, size and morphological distribution of inclusions in steels sorted by chemical class.5.2 Methods 1 and 2 of this test method are primarily intended for rating the inclusion content of steels deoxidized with silicon or aluminum, both silicon and aluminum, or vacuum-treated steels without either silicon or aluminum additions. Guidelines are provided to rate inclusions in steel treated with rare earth additions or calcium-bearing compounds (13.4). When such steels are evaluated, the test report should describe the nature of the inclusions rated according to each inclusion category (A, B, C, D).5.3 Methods 1 and 2 will provide a quantitative rating of the inclusion content in half-severity number increments from 0 to 5 for each inclusion type and thickness (Method D of Test Method E45), and in tabulated in Table 2. Test Method E45 ratings by SEM may differ from those determined following E45 because of the use of chemistry in the classifications. In order to differentiate E45 ratings obtained using the SEM from traditional ratings using light microscopy, the ratings obtained using Method 1 or 2 of this Test Method shall be identified as E45-SEM1 and E45-SEM2, respectively.5.4 Method 3 defines procedures to analyze and report inclusions by arbitrary size distribution and chemical classifications. It may be made applicable to any material by appropriate choice of these classifications.5.4.1 Method 3 determines and reports basic (as used in Test Method E1245) stereological measurements (for example, volume fraction of sulfides and oxides, the number of sulfides or oxides per square millimeter, and so forth). This test method, however, does not address the measurement of such parameters. E45 ratings are not produced in Method 3 because the inclusion classifications do not follow those defined in Test Method E45.5.5 The quantitative results are intended to provide a description of the types and amounts of inclusions in a heat of steel. This test method contains no guidelines for such use.1.1 This test method covers procedures to obtain particle size distribution, chemical classification, and Test Methods E45 ratings of inclusions in steels using an automated scanning electron microscope (SEM) with X-ray analysis and automatic image analysis capabilities.1.2 There are three discrete methods described. Method 1 is the SEM analog of Test Method E45, which uses image analysis and light microscopy to produce automated Test Methods E45 ratings. Method 2 produces similar ratings based predominantly on sorting inclusions by chemistry into the traditional classes defined in Test Methods E45. Method 3 is recommended when explicit detail is needed on particular inclusion types, not necessarily defined in Test Methods E45, such as to verify the composition of inclusions in inclusion-engineered steel. Method 3 reports stereological parameters such as volume or number fraction, rather than Test Methods E45 type ratings.1.3 This test method deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability for any grade of steel or other alloy where the method is appropriate.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is useful for the direct measurement of the thicknesses of metallic coatings and of individual layers of composite coatings, particularly for layers thinner than normally measured with the light microscope.4.2 This test method is suitable for acceptance testing.4.3 This test method is for the measurement of the thickness of the coating over a very small area and not of the average or minimum thickness per se.4.4 Accurate measurements by this test method generally require very careful sample preparation, especially at the greater magnifications.4.5 The coating thickness is an important factor in the performance of a coating in service.1.1 This test method covers the measurement of metallic coating thicknesses by examination of a cross section with a scanning electron microsope (SEM).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 These methods can be used to determine magnifications as viewed through the eyepieces of light microscopes.4.2 These methods can be used to calibrate microscope magnifications for photography, video systems, and projection stations.4.3 Reticles may be calibrated as independent articles and as components of a microscope system.1.1 This guide covers methods for calculating and calibrating microscope magnifications, photographic magnifications, video monitor magnifications, grain size comparison reticles, and other measuring reticles. Reflected light microscopes are used to characterize material microstructures. Many materials engineering decisions may be based on qualitative and quantitative analyses of a microstructure. It is essential that microscope magnifications and reticle dimensions be accurate.1.2 The calibration using these methods is only as precise as the measuring devices used. It is recommended that the stage micrometer or scale used in the calibration should be traceable to the National Institute of Standards and Technology (NIST) or a similar organization.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The traditional resolution test of the SEM requires, as a first step, a photomicrograph of a fine particulate sample taken at a high magnification. The operator is required to measure a distance on the photomicrograph between two adjacent, but separate edges. These edges are usually less than one millimetre apart. Their image quality is often less than optimum limited by the S/N ratio of a beam with such a small diameter and low current. Operator judgment is dependent on the individual acuity of the person making the measurement and can vary significantly.4.2 Use of this practice results in SEM electron beam size characterization which is significantly more reproducible than the traditional resolution test using a fine particulate sample.1.1 This practice provides a reproducible means by which one aspect of the performance of a scanning electron microscope (SEM) may be characterized. The resolution of an SEM depends on many factors, some of which are electron beam voltage and current, lens aberrations, contrast in the specimen, and operator-instrument-material interaction. However, the resolution for any set of conditions is limited by the size of the electron beam. This size can be quantified through the measurement of an effective apparent edge sharpness for a number of materials, two of which are suggested. This practice requires an SEM with the capability to perform line-scan traces, for example, Y-deflection waveform generation, for the suggested materials. The range of SEM magnification at which this practice is of utility is from 1000 to 50 000 × . Higher magnifications may be attempted, but difficulty in making precise measurements can be expected.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is useful for accurate measurement of from a wide variety of glass samples, whose ranges from 1.48–1.55. 4.2 It should be recognized that measurement of surface fragments, especially from float glass samples, can result in refractive index values which are different than the refractive index values of fragments from the interior of (for example, bulk) the same broken glass source (5). 4.3 The precision of this test method shall be established in each laboratory that employs it as part of the validation protocol (see Section 9). 4.4 It should be recognized that this technique measures the refractive index of the glass at the match point temperature, which will be higher than ambient temperature, and thus, may give different values from those obtained by other methods, which measure the refractive index at room temperature. 1.1 This test method covers a procedure for measuring and comparing the refractive index (η) at a fixed wavelength (λ) and temperature (T) ( ) of glass from known sources to recovered fragments from a questioned source. 1.2 This test method does not include the measurement of optical dispersion or the measurement of refractive index ( ) at any other wavelength other than the Sodium D line ( ). This method employs a narrow band pass filter at 589 nm, but other filters could be employed using the described method, allowing the to be determined at other wavelengths, and therefore, also allowing for the dispersion value to be calculated. 1.3 Alternative methods for the determination of are listed in Refs (1-5).2 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard cannot replace knowledge, skills, or abilities acquired through education, training, and experience and is to be used in conjunction with professional judgment by individuals with such discipline-specific knowledge, skills, and abilities. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Careful use of this practice can yield calibrated z-magnifications traceable to the SI unit of length with uncertainties (k = 2) of approximately 7 % over height ranges of approximately 1 nm.1.1 This practice covers a measurement procedure to calibrate the z-scale of an atomic force microscope using Si(111) monatomic step height specimens.1.2 Applications This procedure is applicable either in ambient or vacuum condition when the atomic force microscope (AFM) is operated at its highest levels of z-magnification, that is, in the nanometer and sub-nanometer ranges of z-displacement. These ranges of measurement are required when the AFM is used to measure the surfaces of semiconductors, optical surfaces, and other high technology components.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
14 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页