微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 General—CCPs can effectively be used to reclaim surface mines (5-10). First, CCPs are ideally suited for use in numerous reclamation applications. Any type of CCP may be evaluated for use in mine reclamation. Project specific testing is necessary to ensure that the CCPs selected for use on a given project will meet the project objectives. Second, the use of CCPs can save money because they are available in bulk quantities and reduce expenditures for the manufacture and purchase of Portland cement or quicklime. Third, large-scale use of CCPs for mine reclamation conserves valuable landfill space by recycling a valuable product to abate acid mine drainage and reduce the potential for mine subsidence, provided that the CCP is environmentally and technically suitable for the desired use. The availability of CCPs makes it possible to reclaim abandoned mineland that could not otherwise be reclaimed. The potential for leaching constituents contained in CCPs should be evaluated to ensure that there is no adverse environmental impact.4.2 Physical and Chemical Properties and Behavior of CCPs—Fly ash, bottom ash, boiler slag, FGD material and FBC ash, or combinations thereof, can be used for mine reclamation. Each of these materials typically exhibits general physical and chemical properties that must be considered in the design of a mine reclamation project using CCPs. The specific properties of these materials vary from source to source so environmental and engineering performance testing is recommended for the material(s) or combinations to be used in mine reclamation projects.4.2.1 Physical Properties: 4.2.1.1 Unit Weight—Unit weight is the weight per unit volume of material. Fly ash has a low dry unit weight, typically about 50 to 100 pcf (8 to 16 kN/m3). Bottom ash is also typically lighter than coarse grained soils of similar gradation. Stabilized FGD material from a wet scrubber and FGD material from a dry scrubber are also relatively lightweight, with unit weights similar to fly ash.4.2.1.2 Strength—Shear strength is the maximum resistance of a material to shearing stresses. The relatively high shear strength of fly ash is beneficial for CCP flowable fill formulations requiring strengths sufficient to prevent mine subsidence. The shear strength of non-self-hardening fly ash is primarily the result of internal friction. Cementitious CCPs experience a cementing action that is measured as cohesion and increases over time, which results in high compressive strength. Unconfined compressive strengths in excess of 1000 psi can be achieved for cementitious CCPs.4.2.1.3 Specific Gravity—Specific gravity is the ratio of the weight in air of a given volume of solids at a stated temperature to the weight in air of an equal volume of distilled water at a stated temperature. The particle specific gravity of fly ash is relatively low compared to that of natural materials, and generally ranges from 2.1 to 2.6.4.2.1.4 Grain-Size Distribution—Grain-size distribution describes the proportion of various particle sizes present in a material. Fly ash is a uniformly-graded product with spherical, very fine grained particles.4.2.1.5 Moisture Content—Moisture content is the ratio of the mass of water contained in the pore spaces of soil or rock material to the solid mass of particles in that material, expressed as a percentage. CCPs have almost no moisture when first collected after the combustion of coal. Power plant operators sometimes add moisture to facilitate transport and handling, a process termed “conditioning.”4.2.1.6 Coefficient of Permeability—Permeability is the capacity of a material to transmit a liquid. When compacted to its maximum dry density, fly ash can have permeabilities ranging from 10 to 10-3 gpd/ft2 (10-4 to 10-7 cm/s). These permeabilities are comparable to natural silty soils.4.2.2 Chemical Properties: 4.2.2.1 Elemental Composition—The major elemental components of CCPs are silica, aluminum, iron, calcium, magnesium, sodium, potassium, and sulfur. These elements are present in various amounts and combinations dependent primarily on the coal and type of CCP. The elements combine to form amorphous (glassy) or crystalline phases. Trace constituents may include elements such as arsenic, boron, cadmium, chromium, copper, chlorine, mercury, manganese, molybdenum, selenium, or zinc.4.2.2.2 Phase Associations—The primary elemental constituents of CCPs are present either as amorphous (glassy) phases or crystalline phases. Coal combustion fly ash is typically 70+ % amorphous material. FGD and FBC products are primarily crystalline, and the crystalline phases typically include lime (CaO), portlandite (Ca(OH)2), hannebachite (CaSO3 · 1/2 H2O), and forms of calcium sulfate.4.2.2.3 Free Lime Content—Free lime content varies among CCP sources and other potential activators (for example, lime kiln dust, cement kiln dust, quicklime, or Portland cement). Variability of free lime content in CCP sources is due to the type and efficiency of the emissions control technology that is used. FBC products typically contain up to 10 % free lime, while most Class F fly ash has no free lime content. The free lime content of other potential activators is also variable. For example, cement kiln dust typically ranges from 20 to 30 % free lime whereas quicklime contains 100 % free lime.4.2.2.4 Pozzolanic Activity—Most CCPs, with the exception of FGD material, are characterized as pozzolans due to the presence of siliceous or siliceous and aluminous materials that in themselves possess little or no cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds possessing cementitious properties.4.2.2.5 Buffer Capacity—The buffer capacity of the CCP is important in maintaining the high pH that generally is a requirement for neutralizing acidic materials such as acid mine drainage or for minimizing acid formation from acid forming materials. The CCP must have enough buffer capacity to maintain the pH of the treated areas so the area remains stable over time and under environmental stresses. Test Methods C400 can be applied to evaluate the buffer capacity of the CCP. Determine the basicity factor for the CCP as noted in Test Method B of Test Methods C400.4.3 Environmental Considerations: 4.3.1 Regulatory Framework: 4.3.1.1 Federal—The U.S. Department of the Interior Office of Surface Mining (OSM) is charged with the responsibility of ensuring that the national requirements for protecting the environment during coal mining are met and making sure the land is reclaimed after it is mined. When the use of CCPs happens at surface coal mines, state or federal coal-mining regulators are involved to the extent that SMCRA (Surface Mining Control and Reclamation Act) requires the mine operator to ensure that:(1) All toxic materials are treated, buried, and compacted, or otherwise disposed of, in a manner designed to prevent contamination of ground or surface water (30 CFR 816/817.41).(2) The proposed land use does not present any actual or probable threat of water pollution (30 CFR 816/817.133).(3) The permit application contains a detailed description of the measures to be taken during mining and reclamation to ensure the protection of the quality and quantity of surface and ground water systems, both on- and off-site, from adverse effects of the mining and reclamation process (30 CFR 780.21 and Sections 401.402, or 404 of the Clean Water Act).(4) The rights of present users of such water are protected (30 CFR 816/817.41).(5) Any disposal of CCPs at mine sites must be in accordance with those standards and with applicable solid waste disposal requirements (30 CFR 816/817.89).SMCRA gives primary responsibility for regulating surface coal mine reclamation to the states, and 24 coal-producing states have chosen to exercise that responsibility. On federal lands and Indian reservations (Navajo, Hopi, and Crow) and in the coal states that have not set up their own regulatory programs (Tennessee and Washington), OSM issues the coal mine permits, conducts the inspections, and handles the enforcement responsibilities. As a result of the activities associated with the SMCRA, coal mine operators now reclaim as they mine, and mined lands are no longer abandoned without proper reclamation. OSM also collects and distributes funds from a tax on coal production to reclaim mined lands that were abandoned without being reclaimed before 1977. OSM has a Coal Combustion Residues Management Program that focuses on providing expert technical information on the use of CCPs in mine reclamation for the mining industry, regulatory agencies, and other stakeholders. Use of CCPS in reclamation procedures should be proposed in the mining permit application if possible, detailing the type and characteristics of the proposed CCP and the specific beneficial use for the location proposed. In 1999, U.S. Environmental Protection Agency (EPA) completed a two-phased study of CCPs for the U.S. Congress as required by the Bevill Amendment to RCRA. At the conclusion of the first phase in 1993, EPA issued a formal regulatory determination that the characteristics and management of the four large-volume fossil fuel combustion waste streams (that is, fly ash, bottom ash, boiler slag, and flue gas emission control waste) do not warrant hazardous waste regulation under RCRA and that utilization practices for CCPs appear to be safe. In addition, EPA “encourage[d] the utilization of coal combustion by-products and support[ed] state efforts to promote utilization in an environmentally beneficial manner.” In the second phase of the study, EPA focused on the by-products generated from FBC boiler units and the use of CCPs from FBC and conventional boiler units for mine reclamation, among other things. Following completion of the study, EPA issued a regulatory determination that again concluded that hazardous waste regulation of these combustion residues was not warranted. However, EPA also decided to develop national solid waste regulatory standards for CCPs, including standards for placement of CCPs in surface or underground mines, either under RCRA, SMCRA, or a combination of the two programs (65 CFR 32214, May 22, 2000).4.3.1.2 State and Local—There is considerable variation in state-mandated permitting and other regulatory requirements for CCP utilization. Some states have specific beneficial use policies, while other states have no regulations or guidance addressing beneficial use. Although the NEPA (National Environmental Policy Act) strictly applies only to federally funded projects, many states have similar mechanisms for assessing the environmental impacts of non-Federal projects. These mechanisms may require state permits that address any or all of the following issues: wetlands/waterways, National Pollutant Discharge Elimination System (NPDES) discharge, underground injection, erosion and sediment control, air quality considerations, and storm water management.4.3.2 Water Quality—When planning to use CCPs for mine reclamation, one should consider the potential impacts on ground water and surface water to ensure protection of human health and the environment.4.3.2.1 Ground Water—The design and implementation of a mine reclamation project should consider the potential ground water impacts of CCPs to ensure the protection of human health and the environment. Considerable research has been conducted to assess and predict the potential impacts of CCP utilization on ground water quality. An assessment of ground water quality impacts should be performed by a qualified professional and should take into account project-specific considerations such as composition of CCPs, the typical leachability of CCPs, presence of acid forming materials or acid mine drainage, placement of CCPs relative to the ground water table, rates of infiltration, the type of placement used for the CCP, and constituent migration, attenuation in ground water, and location of sensitive receptors (that is, wells). Where protection of ground water is a special concern, the leaching characteristics of the CCP should be evaluated as part of the assessment of constituent migration and attenuation. Consideration should be given to the leachability of the CCP in the presence of AMD.NOTE 1: It is highly recommended that up-gradient and down-gradient wells be installed to determine background groundwater conditions prior to CCP placement. Then, following placement of CCPs, periodic monitoring of these wells should be done to determine any potential groundwater impact.]4.3.2.2 Surface Water—CCPs may affect surface water bodies during and after placement activities as a result of erosion and sediment transport. The engineering and construction practices recommended to minimize these effects on surface waters (in accordance with the requirements of the 30 CFR 816.43 through 816–49 and any applicable federal or state permit) include storing the CCPs in stockpiles employing effective storm water management controls to maximize runoff and minimize run-on. Impacts could also be minimized by limiting size of active working face of area being reclaimed.4.3.3 Air Quality—When planning to use CCPs for mine reclamation, one should consider the potential impacts to air quality including dusting and emissions.4.3.3.1 Dust Control—Dusting must be controlled during the transport and handling of CCPs in order to avoid fugitive dust and to ensure worker safety. Dust control measures routinely used on earthwork projects are effective in minimizing airborne particulates at CCP storage sites. Typical controls include appropriate hauling methods, use of windbreaks, moisture conditioning of the CCPs, storage in bins or silos, covering the CCPs with large tarpaulins, wetting or covering exposed CCP surfaces, and paving or wetting unpaved high-traffic haul roads with coarse materials.4.3.3.2 Radionuclides—Coal and fly ash are not significantly enriched in radioactive elements or in associated radioactivity compared to common soils or rocks (11). Certain radioactive elements including radium and uranium are known to occur naturally in CCPs (12) and other fill materials. The U.S. Department of Energy estimated the radium concentration of fly ash to be no more than 3.0 pCi/g (13). Radon emissions from the CCPs are not likely to exceed the naturally occurring ambient emissions.4.4 Economic Benefits—The use of CCPs for mine reclamation can have economic benefits. These benefits are affected by local and regional factors, including production rates, processing and handling costs, transportation costs, availability and cost of competing materials, environmental concerns, and the experience of materials specifiers, design engineers, purchasing agents, contractors, legislators, regulators, and other professionals. CCPs are competing as manufactured materials and not as waste products. Since CCPs are produced in the process of manufacturing electricity, these materials can present an advantage when utilized as raw products for finished goods. This is primarily due to the low overheads involved with the material production cost and the fact that some, but not all coal-fired power plants have immediate access to low-cost transportation. The transport of coal to the power plant can provide an excellent opportunity to return CCPs to a mine site to aid in mine reclamation projects.1.1 This guide covers the beneficial use of coal combustion products (CCPs) for abatement of acid mine drainage and revegetation for surface mine reclamation applications related to area mining, contour mining, and mountaintop removal mining. It does not apply to underground mine reclamation applications. There are many important differences in physical and chemical characteristics that exist among the various types of CCPs available for use in mine reclamation. CCPs proposed for each project must be investigated thoroughly to design CCP placement activities to meet the project objectives. This guide provides procedures for consideration of engineering, economic, and environmental factors in the development of such applications.1.2 The utilization of CCPs under this guide is a component of a pollution prevention program; Guide E1609 describes pollution prevention activities in more detail. Utilization of CCPs in this manner conserves land, natural resources, and energy.1.3 This guide applies to CCPs produced primarily from the combustion of coal.1.4 The testing, engineering, and construction practices for using CCPs in mine reclamation are similar to generally accepted practices for using other materials, including cement and soils, in mine reclamation.1.5 Regulations governing the use of CCPs vary by state. The user of this guide has the responsibility to determine and comply with applicable regulations.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification establishes performance requirements for the performance of flame mitigation devices (FMDs) installed in disposable and pre-filled liquid containers, intended for consumer use where the liquid flashpoint is below 60 ºC [140 ºF]. (See Appendix X1.)1.1.1 Uses of disposable and pre-filled flammable liquid containers include but are not limited to fuels, fire starters, and additives for internal combustion engines.1.1.2 An FMD that complies with this specification minimizes the potential of flame jetting or container rupture from occurring.1.1.3 Containers without a significant area reduction at the container opening are not covered because there is no hazard of a flame jet or container rupture because an internal pressure rise does not result from an internal ignition. (See X1.5.)1.2 This specification does not apply to the following containers:1.2.1 Containers greater than 20 L [5.3 gal] or smaller than 100 mL [3.4 oz] in volume.1.2.2 Containers intended for beverages.1.2.3 Portable fuel containers as defined in Specification F852/F852M.1.2.4 One-time use portable emergency fuel containers for use by consumers as defined in Specification F2874.1.2.5 Containers not intended to be open to ambient conditions such as those for liquefied petroleum gas.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Information on specific hazards associated with the test methods in this specification is shown in Section 4.4.1.5 This specification does not address hazards caused by fire and explosion nor hazards from vapors external to the container when the fuel in the container does not ignite. Further, this specification does not consider scenarios where confinement, obstructions, or preheating cause flame acceleration prior to the flame front reaching the interior of the container.1.6 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.1.7 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The purpose of the methods, systems, and designs described in this practice is to reduce radiation exposures for occupants of residential buildings caused by radon and its progeny. The goal of mitigation is to maintain reduced radon concentrations in occupiable areas of buildings at levels as low as reasonably achievable. This practice includes sections on reducing radiation exposure caused by radon and its progeny for workers who install and repair radon mitigation systems. The goal for workers is to reduce exposures to radon and its progeny to levels as low as reasonably achievable.5.2 The methods, systems, designs, and materials described here have been shown to have a high probability of success in mitigating radon in attached and detached residential buildings, three stories or less in height (see EPA, “Radon Reduction Techniques for Existing Detached Houses, Technical Guidance (Third Edition) for Active Soil Depressurization Systems”). Application of these methods does not, however, guarantee reduction of radon levels below any specific level, since performance will vary with site conditions, construction characteristics, weather, and building operation.5.3 When applying this practice, contractors also shall conform to all applicable local, state, and federal regulations, and laws pertaining to residential building construction, remodeling, and improvement.1.1 This practice describes methods for reducing radon entry into existing attached and detached residential buildings three stories or less in height. This practice is intended for use by trained, certified or licensed, or both, or otherwise qualified individuals.1.2 These methods are based on radon mitigation techniques that have been effective in reducing radon levels in a wide range of residential buildings and soil conditions. These fan powered mitigation methods are listed in Appendix X1. More detailed information is contained in references cited throughout this practice.1.3 This practice is intended to provide radon mitigation contractors with a uniform set of practices that will ensure a high degree of safety and the likelihood of success in retrofitting low rise residential buildings with radon mitigation systems.1.4 The methods described in this practice apply to currently occupied or formerly occupied residential buildings, including buildings converted or being converted to residential use, as well as residential buildings changed or being changed by addition(s) or alteration(s), or both. The radon reduction activities performed on new dwellings, while under construction, before occupancy, and for up to one year after occupancy, are covered by Practice E1465.1.5 This practice also is intended as a model set of practices, which can be adopted or modified by state and local jurisdictions, to fulfill objectives of their specific radon contractor certification or licensure programs. Radon mitigation performed in accordance with this practice is considered ordinary repair.1.6 The methods addressed in this practice include the following categories of contractor activity: general practices, building investigation, systems design, systems installation, materials, monitors and labeling, post-mitigation testing, and documentation.1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 6 for specific safety hazards.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 General—This guide contains information regarding the use of AOPs to oxidize and eventually mineralize hazardous materials that have entered surface and groundwater as the result of a spill. These guidelines will only refer to those units that are currently applied at a field scale level. The user should review applicable state regulations and guidance on the applicability of AOP (see California DTSC 2010, New Jersey DEP 2017, Oklahoma DEQ 2017).NOTE 1: Commercialization of AOP for the treatment of wastewater and process water is fairly mature. Several transnational companies offer mobile and large-scale processing units for the treatment of persistent chemicals of concern. Standard Guides D5745, E2081, and E2616 may be useful. Fig. 1 illustrates the general AOP process.FIG. 1 Schematic Illustration of Hydroxyl Radical's Generation for the Degradation of Organic PollutantsSource: Amor, Carlos, et al. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11(2), 205; https://doi.org/10.3390/w11020205 (open access publication)Fig. 2 illustrates the range of AOP technologies.FIG. 2 Examples of Advanced Oxidation ProcessesSource: Amor, Carlos, et al. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11(2), 205; https://doi.org/10.3390/w11020205 (open access publication)4.2 Oxidizing Agents: 4.2.1 Hydroxyl Radical (OH)—The OH radical is the most common oxidizing agent employed by this technology due to its powerful oxidizing ability. When compared to other oxidants such as molecular ozone , hydrogen peroxide, or hypochlorite, its rate of attack is commonly much faster. In fact, it is typically one million (106) to one billion (109) times faster than the corresponding attack with molecular ozone (Keller and Reed, 1991 (1)).9 The three most common methods for generating the hydroxyl radical are described in the following equations:4.2.1.1 Hydrogen peroxide is the preferred oxidant for photolytic oxidation systems since ozone will encourage the air stripping of solutions containing volatile organics (Nyer, 1992 (2) ). Capital and operating costs are also taken into account when a decision on the choice of oxidant is made (see NJ Dept. of Environmental Protection, 2017).4.2.1.2 Advanced oxidation technology has also been developed based on the anatase form of titanium dioxide. This method by which the photocatalytic process generates hydroxyl radicals is described in the following equations:4.2.2 Photolysis—Destruction pathways, besides the hydroxyl radical attack, are very important for the more refractory compounds such as chloroform, carbon tetrachloride, trichloroethane, and other chlorinated methane or ethane compounds. A photoreactor's ability to destroy these compounds photochemically will depend on its output level at specific wavelengths (see FRTR Technology Screening Tool).4.3 AOP Treatment Techniques: 4.3.1 Advanced oxidation processes (AOPs) may be applied alone or in conjunction with other treatment techniques as follows:4.3.1.1 Following a pretreatment step—The pretreatment process can be either a physical or chemical process for the removal of inorganic or organic scavengers from the contaminated stream prior to AOP destruction.4.3.1.2 Following a preconcentration step—Due to the increase in likelihood of radical or molecule contact, very dilute solutions can be treated cost effectively using AOPs after being concentrated.4.4 AOP Treatment Applications—Advanced oxidation processes (AOPs) are most cost effective for those waste streams containing organic compounds at concentrations below 1 % (10 000 ppm). This figure will vary depending upon the nature of the compounds and whether there is competition for the oxidizing agent.1.1 This guide covers the considerations for advanced oxidation processes (AOPs) in the mitigation of spilled chemicals and hydrocarbons dissolved into ground and surface waters.1.2 This guide addresses the application of advanced oxidation alone or in conjunction with other technologies.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.In addition, it is the responsibility of the user to ensure that such activity takes place under the control and direction of a qualified person with full knowledge of any potential safety and health protocols.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method evaluates the ability of an automotive engine to mitigate preignition in the combustion chambers in turbocharged, direct injection, gasoline engines under low-speed and high-load operating conditions.5.2 Varying quality reference oils, with known preignition tendencies, were used in developing the operating conditions of the test procedure.5.3 The test method has applicability in gasoline-engine-oil specifications and is expected to be used in specifications and classifications of engine lubricating oils, such as the following:5.3.1 Specification D4485.5.3.2 ILSAC GF-6.5.3.3 SAE Classification J183.1.1 This laboratory engine test evaluates the ability of an automotive engine to mitigate preignition in the combustion chambers in gasoline, turbocharged, direct-injection (GTDI) engines under low-speed and high-load operating conditions. This test method is commonly known as the Ford low-speed, preignition (LSPI) test.1.1.1 In vehicles, equipped with relatively small GTDI spark-ignition engines, preignition has occasionally occurred when the vehicles are operated under low-speed and high-load conditions. Uncontrolled, preignition may cause destructive engine damage.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct SI equivalent such as screw threads, national pipe threads/diameters, tubing size, wire gauge, or specified single source equipment.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1058元 / 折扣价: 900 加购物车

在线阅读 收 藏
ASTM F3286-17 Standard Guide for Cybersecurity and Cyberattack Mitigation Active 发布日期 :  1970-01-01 实施日期 : 

5.1 To maintain the integrity of potentially vulnerable information systems while the vessel is at sea or in port, strategies and procedures can be used by every company, organization, and ship. Mitigating potential cyberattack events will allow for a better economic environment through secure consumer, employee, and corporate data. Informational infrastructure between ships, platforms, and onshore facilities are more interconnected today than a decade ago. The long-term health and economic viability of ship owners and operators depend on establishing and maintaining security that can measured and monitored.5.2 With the increase in cyberattacks in recent decades, maritime-based companies and governments have cited a need to update and train their workforce to mitigate the loss of data or intellectual theft from onboard systems.5.2.1 Vulnerable onboard systems can include, but are not limited to:5.2.1.1 Cargo management systems;5.2.1.2 Bridge systems;5.2.1.3 Propulsion and machinery management and power control systems;5.2.1.4 Access control systems;5.2.1.5 Passenger servicing and management systems;5.2.1.6 Passenger facing public networks;5.2.1.7 Administrative and crew welfare systems;5.2.1.8 Communications systems;5.2.1.9 Distributed computing devices that support an internet of things (IoT)-enabled ship; and5.2.1.10 Onboard sensors that facilitate wheelhouse automation, alerting, and IoT transmission.5.2.2 Many of these systems are critical to mariners while at sea. If any of said systems failed or were compromised while at sea because of a cyberattack, then the ship and its security could be compromised.5.3 By adopting these practices, mariners and shoreside employees at all levels of the organization should be able to identify potential threats or risk factors, as well as the abnormal indications that show a cyberattack underway.5.4 Cyberattacks can occur in multiple forms including, but not limited to, the following practices:5.4.1 Social engineering,5.4.2 Phishing,5.4.3 Waterholing,5.4.4 Ransomware,5.4.5 Scanning,5.4.6 Spear-phishing,5.4.7 Deploying botnets, and5.4.8 Subverting the supply chain.5.5 These suggested strategies extend to all individuals of a corporation, government, or organization. By adopting a basic and developed capability to defend from cyberattacks, mariners can continue proper practices out at sea while feeling confident that safety critical systems, business-critical data, personal data, and records are safe.5.6 In the event of system error, or in the case of cyberattack or infection, any files required to rebuild or repair a personal computer (PC)-based onboard system shall be on the ship already rather than from off-board sources using satellite communications systems. Most vessels currently do not have operating system disks on board, let alone proprietary software, drivers, or patches. This connectivity constraint and lack of multiple failsafe outputs also provide a single point of failure and vulnerability. In the future, system software and firmware may be kept current with over-the-air updates, which shall be encrypted.5.7 There are cross-system considerations that shall be considered for cyber-enabled ships. They may include such factors as:5.7.1 Human-system interfaces;5.7.2 Software availability, versions, and licensing;5.7.3 Network and communications, including remote access methods;5.7.4 Data trustworthiness and availability (that is, data assurance);5.7.5 Diagnostic and evaluation equipment that may be required to diagnose system problems;5.7.6 Cybersecurity, especially as it applies to safety critical and ship critical systems; and5.7.7 Onboard sensors and IoT infrastructure that provide data for ship operations and command decisions.5.8 By adopting these practices, companies and governments will notice the benefits of better cybersecurity. Some benefits may include, but are not limited to:5.8.1 Better business performance;5.8.2 Increased bandwidth efficiency provided by modern satellite communications;5.8.3 Better crew performance during drills or operations;5.8.4 Reinforcing a healthy safety and security awareness culture onboard seagoing vessels;5.8.5 Enhanced quality of life for ship crews;5.8.6 Better adherence to increasingly stringent regulations and the preservation of electronic records and logs;5.8.7 Tighter security controls and access to objective evidence using biometrics, such as fingerprinting and a company/government (that is, TWIC) issued personal identification card; and5.8.8 Resilient systems that can minimize the impact of cyber disruptions.1.1 This guide addresses the company or government organizational need to mitigate the likelihood of cyberattacks and reduce the extent of potential cyberattacks, which can leave sensitive personal data, corporate information, and critical infrastructure vulnerable to attackers.1.2 These recommendations are meant to serve as a guideline for corporate and government organizations to adopt for the protection of sensitive personal information and corporate data against hackers.1.3 Cybersecurity and cyberattacks are not limited to the maritime industry. With greater advancement in computer and information technology (IT), cyberattacks have increased in frequency and intensity over the past decade. These advancements provide hackers with more significant tools to attack vulnerable data and communication infrastructures. Cyberattacks have become an international issue to all governments and companies that interact with each other.1.4 Cybersecurity and the safety of cyber-enabled systems are among the most prevailing issues concerning the maritime industry as well as the global economy. Cyberattacks could affect the flow of trade or goods, but operator errors in complex, automated systems may also cause disruptions that may be mitigated with proper policies and personnel training.1.5 This guide is meant to provide strategies for protecting sensitive data onboard vessels and offshore operations.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Moisture permeating from concrete substrates can detrimentally affect the performance of resilient floor covering systems. All resilient flooring and adhesive manufacturers have a maximum acceptable level of moisture in which their products can perform satisfactorily. If pre-installation moisture tests indicate that the moisture level is unacceptable for the specified floor covering to be installed, one option is to apply a topical treatment to the concrete substrate surface to mitigate the moisture condition. Experience has shown that certain types of membrane-forming moisture mitigation systems have more desirable properties and successful performance than others. Requirements for membrane-forming moisture mitigation systems to be used, and other related details, are generally included as part of the project plans, or specification details, and may vary from the minimum recommendations set forth in this practice.4.2 This practice is intended for use after it has been determined that a floor moisture condition exceeds the resilient floor covering or adhesive manufacturer’s requirements, or both, as tested according to Test Methods F1869, F2170, and F2420.4.3 Membrane-forming moisture mitigation systems are not intended for use over gypsum-based substrates or other moisture sensitive substrates.1.1 This practice covers the properties, application, and performance of a two-component resin based membrane-forming moisture mitigation system to high moisture concrete substrates prior to the installation of resilient flooring.1.2 This practice includes recommendations for the preparation of the concrete surface to receive a two-component resin based membrane-forming moisture mitigation system.1.3 This practice does not supersede written instructions of the two-component resin based membrane-forming moisture mitigation system manufacturer, the resilient flooring manufacturer, underlayment manufacturer, the adhesive manufacturer, or other components of the finish flooring system, or combinations thereof. Users of this practice shall review manufacturer’s technical data sheets and installation instructions for compatibility of system components.1.4 The following membrane-forming or non membrane-forming moisture mitigation systems are not included in the scope of this practice:1.4.1 Moisture mitigation systems that chemically react with any constituent of the concrete to form a gel or crystalline substance within the concrete.1.4.2 Penetrating, water- or solvent-based compounds that do not form a continuous membrane on the concrete surface.1.4.3 Water-based membrane-forming moisture mitigation systems are not included in the scope of this document.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Digital and multimedia evidence forensics is a complex field that is heavily reliant on algorithms that are embedded in automated tools and used to process evidence. Weaknesses or errors in these algorithms, tools, and processes can potentially lead to incorrect findings. Indeed, errors have occurred in a variety of contexts, demonstrating the need for more scientific rigor in digital and multimedia evidence forensics. This guide proposes a disciplined approach to mitigating potential errors in evidence processing to reduce the risk of inaccuracies, oversights, or misinterpretations in digital and multimedia evidence forensics. This approach provides a scientific basis for confidence in digital and multimedia evidence forensic results.3.2 Error rates are used across the sciences to characterize the likelihood that a given result is correct. The goal is to explain to the reader (or receiver of the result) the confidence the provider of the result has that it is correct. Many forensic disciplines use error rates as a part of how they communicate their results. Similarly, digital and multimedia evidence forensics needs to communicate how and why there is confidence in the results. Because of intrinsic difference between the biological and chemical sciences and computer science, it is necessary to go beyond error rates. One difference between chemistry and computer science is that digital technology is constantly changing and individuals put their computers to unique uses, making it infeasible to develop a representative sample to use for error rate calculations. Furthermore, a digital and multimedia evidence forensic method may work well in one environment but fail completely in a different environment.3.3 This guide provides a disciplined and structured approach for addressing and explaining potential errors and error rates associated with the use of digital and multimedia evidence forensic tools/processes in any given environment. This approach to establishing confidence in digital and multimedia evidence forensic results addresses Daubert considerations.1.1 This guide provides a process for recognizing and describing both errors and limitations associated with tools, techniques, and methods used to support digital and multimedia evidence forensics. This is accomplished by explaining how the concepts of errors and error rates should be addressed in digital and multimedia evidence forensics. It is important for practitioners and stakeholders to understand that digital and multimedia evidence forensic techniques and tools have known limitations, but those limitations have differences from errors and error rates in other forensic disciplines. This guide proposes that confidence in digital and multimedia evidence forensic results is best achieved by using an error mitigation analysis approach that focuses on recognizing potential sources of error and then applying techniques used to mitigate them, including trained and competent personnel using tested and validated methods and practices. Sources of error not directly related to tool usage are beyond the scope of this guide.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This guide addresses issues related solely to strategies and the development of a plan to address wildfire-related physical and chemical changes to water resources in Source Water Protection Areas. This guide does not include specific advice on risk assessment. Mitigation strategies and planning may consist of a wide variety of actions by individuals, communities, or organizations to prepare for the impacts of wildfires on water quality and quantity in Source Water Protection Areas (see Guide E3136).4.2 Source water protection activities not only help the utility identify risk, but they are also necessary to educate regulatory agencies, permitting authorities, and the community about the impacts that their actions can have on source water quality or quantity of the drinking water.4.3 Example Users: 4.3.1 Federal, tribal, state, or municipal facility staff and regulators, including departments of health, water, sewer, and fire;4.3.2 Financial and insurance institutions;4.3.3 Federal, tribal, state, or local land managers;4.3.4 Public works staff, including water systems, groundwater supplies, surface water supplies, stormwater systems, wastewater systems, publicly owned treatment works, and agriculture water management agencies;4.3.5 Consultants, auditors, state, municipal and private inspectors, and compliance assistance personnel;4.3.6 Educational facilities such as experimental forests and nature preserves;4.3.7 Non-regulatory government agencies, such as the military;4.3.8 Wildlife management entities including government, tribal, and non-governmental organizations (NGOs);4.3.9 Cities, towns, and counties, especially in developing climate vulnerability strategies and plans;4.3.10 Commercial and residential real estate property developers, including redevelopers;4.3.11 Non-profits, community groups, and land owners.4.4 Coordination and cooperation must fit into the process for improving community preparedness.4.4.1 Preparedness is based first on the community developing a broad awareness and understanding of the risks that are present locally. Next comes a community-wide evaluation of which community members or assets are most vulnerable to risks, the mechanisms or pathways of risks, and the existing capabilities to address those risks should a wildfire occur (see Guide E3241). The capabilities being evaluated include more than the ability of the first responders or wildland firefighters to take actions. It includes the capabilities of all community members to take appropriate actions.4.4.2 All communities have capability gaps when evaluated against the risks present in the community. Strategic planning aims to fill those capability gaps with prioritization for efforts developed by the community members. Again, improved preparedness is the goal, not simply focusing on response capacity. A wildfire preparedness plan is a good first step.4.4.3 Filling capability gaps requires the use of all the regulatory and social tools available to the community and its partners. All community members have a stake in accident prevention, consequence reduction, and improved collective ability to communicate and respond. Improvements are made through increased awareness, education, training, cooperative programs, and practice. Addressing the identified capability gaps can include a broad range of options such as accident prevention to creation of expectations for the actions of community members to be able to shelter, evacuate, and provide aid to others. Stakeholder engagement is critical to successfully closing capability gaps. This could include forest management, clearing fuel from around structures, and upgrading water filtration systems.4.4.4 Accomplishing these tasks is a community-level activity. While it might be led by an emergency manager or local emergency planning committee, the key to successful preparedness planning is broad coordination and cooperation involving all community members (see Guide E3241).1.1 Overview—Wildfires pose a significant risk to water utilities as they can cause contaminants of concern to be released into surface water and groundwater supplies (1).2 This can endanger human health if systems were not designed to manage these contaminant loads.1.2 Purpose—Mitigation measures of wildfire effects on sediment loads, trace minerals, and contaminants of concern on runoff in a Source Water Protection Area (2) is an expanding area of study that does not have a full set of regulations at the federal or state level. This guide provides public-sector and private-sector land managers and water utility operators details on how to assess the potential impacts of wildfires on watersheds and measures that can be employed to minimize or abate those impacts prior to a wildfire occurring or after it occurs.1.2.1 This guide supplements existing watershed and Source Water Protection Area guidance.1.2.2 This guide will recommend fuel management prior to a wildfire, suppression strategies during a wildfire, and mitigation opportunities for both forests and water treatment systems after the wildfire. It will also support collaboration between involved stakeholders (see Fig. 1 below).FIG. 1 Place-based characteristics for consideration when assessing threats to water supplies and treatment due to a wildfire (adapted from (3)).1.2.3 The purpose of this guide is to provide a series of options that water utilities, landowners, and land managers can implement to limit the chance of a wildfire, specifically in a drinking water watershed, and mitigation opportunities to protect drinking water after a wildfire occurs. This guide encourages consistent management of forests to limit wildfire risks to water resources. The guide presents practices and recommendations based on the best available science to provide institutional and engineering actions to reduce the likelihood of a wildfire and the potentially disastrous consequences. It presents available technologies, institutional controls, and engineering controls that can be implemented by utilities, landowners, and land managers seeking to mitigate the risk of wildfire in a source watershed. With climate change wildfires are an increasing hazard that can affect drinking water supplies. Often water utilities are not prepared for this risk and this guide seeks to support advanced planning.1.2.4 This guide ties into the ASTM E50 standards series related to environmental risk assessment and management.1.2.5 The guide does not provide risk assessment, per se, but may help set priorities for creating a wildfire resilient watershed.1.3 Objectives—The objectives of this guide are to identify the risks of a source watershed o forest to wildfire and identify actions that can be taken to manage those risks. The guide encourages users to set priorities based upon their associated risk. The guide encourages the us to develop long-term solutions for future wildfire risks.1.4 Limitations of this Guide—Given the different types of organizations that may wish to use this guide, as well as variations in state and local regulations, it is not possible to address all the relevant circumstances that might apply to a particular area. This guide uses generalized language and examples for the user. If it is not clear to the user how to apply standards to their specific circumstances, users should seek assistance from qualified professionals. Risks may vary depending on the entity evaluating the risk. This guide does not take a position on the causes or science of extreme weather, natural disasters, or changing environmental conditions.1.5 The guide uses references and information from many cited sources on the control, management, and reduction of pre- and post-fire impacts.1.6 Several national and international agencies served as sources of information on existing and anticipated levels and management of wildfire risks to drinking water supplies including: the Water Services Association of Australia; the U.S. Department of Agriculture; the U.S. Environmental Protection Agency.1.7 This guide recommends reference to current regulatory information about risks gathered from various state agencies, such as departments of environmental protection and water resources boards.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Adaptation and resiliency measures, however, may be consistent with, and complementary to, other safety measures.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification establishes performance requirements for flame mitigation devices (FMDs) in portable fuel containers (PFCs) for gasoline, kerosene, and diesel fuels intended for reuse by the consumer.1.2 A flame mitigation device in gasoline (red), diesel (yellow), and kerosene (blue) PFCs protects the container openings from possible propagation of a flame into a flammable fuel-air mixture within the container. Formation of a flammable fuel-air mixture in the container can occur in special circumstances associated with cold ambient conditions and low liquid levels in the container. Delineations of those circumstances and conditions have been described in published reports, for example, Gardiner et al, 2010 (1),2 and papers, for example, Elias et al, 2013 (2), including research sponsored and overseen by the ASTM F15.10 Technical Committee.1.3 This specification does not address the hazard of injury or death caused by ignition of vapors external to the PFC when the fuel in the PFC is poured onto or near to a fire or other ignition source causing these external vapors to ignite or explode. An FMD does not prevent hazards associated with misuse of the PFC resulting in external vapor ignition.1.4 The flame mitigation device is chemically conditioned by exposure to representative fuel surrogates CE25a and CE85a fuel and other expected conditions prior to the tests.1.5 The flame mitigation device is mechanically conditioned by repeated insertions and removal of a fuel refueling spout prior to the tests.1.6 The first test method establishes that the flame mitigation device can effectively prevent flame propagation into a flammable butane-air mixture inside the portable fuel container. The butane-air mixture is a controlled and repeatable proxy for the more variable fuel vapor-air mixture in the container.1.7 The second test method establishes that the flame mitigation device is permitting adequate flow rates of fuel.1.8 This specification states values in SI units which are to be regarded as the standard. The values given in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Standard practices for measuring the economic performance of investments in buildings and building systems have been published by ASTM. A computer program that produces economic measures consistent with these practices is available.5 The computer program is described in Appendix X3. Discount Factor Tables has been published by ASTM to facilitate computing measures of economic performance for most of the practices.5.2 Investments in long-lived projects, such as the erection of new constructed facilities or additions and alterations to existing constructed facilities, are characterized by uncertainties regarding project life, operation and maintenance costs, revenues, and other factors that affect project economics. Since future values of these variable factors are generally unknown, it is difficult to make reliable economic evaluations.5.3 The traditional approach to uncertainty in project investment analysis is to apply economic methods of project evaluation to best-guess estimates of project input variables, as if they were certain estimates, and then to present results in a single-value, deterministic fashion. When projects are evaluated without regard to uncertainty of inputs to the analysis, decision-makers may have insufficient information to measure and evaluate the financial risk of investing in a project having a different outcome from what is expected.5.4 To make reliable economic evaluations, treatment of uncertainty and risk is particularly important for projects affected by natural and man-made hazards that occur infrequently, but have significant consequences.5.5 Following this guide when performing an economic evaluation assures the user that relevant economic information, including information regarding uncertain input variables, is considered for projects affected by natural and man-made hazards.5.6 Use this guide in the project initiation and planning phases of the project delivery process. Consideration of alternative combinations of risk mitigation strategies early in the project delivery process allows both greater flexibility in addressing specific hazards and lower costs associated with their implementation.5.7 Use this guide for economic evaluations based on Practices E917 (life-cycle costs), E964 (benefit-to-cost and savings-to-investment ratios), E1057 (internal rate of return and adjusted internal rate of return), E1074 (net benefits and net savings), E1121 (payback), E1699 (value engineering), and E1765 (analytical hierarchy process for multi-attribute decision analysis).5.8 Use this guide in conjunction with Guide E2204 to summarize the results of economic evaluations involving natural and man-made hazards.1.1 This guide describes a generic framework for developing a cost-effective risk mitigation plan for new and existing constructed facilities—buildings, industrial facilities, and other critical infrastructure. This guide provides owners and managers of constructed facilities, architects, engineers, constructors, other providers of professional services for constructed facilities, and researchers an approach for formulating and evaluating combinations of risk mitigation strategies.1.2 This guide insures that the combinations of mitigation strategies are formulated so that they can be rigorously analyzed with economic tools. Economic tools include evaluation methods, standards that support and guide the application of those methods, and software for implementing the evaluation methods.1.3 The generic framework described in this guide helps decision-makers assess the likelihood that their facility and its contents will be damaged from natural and man-made hazards; identify engineering, management, and financial strategies for abating the risk of damages; and use standardized economic evaluation methods to select the most cost-effective combination of risk mitigation strategies to protect their facility.1.4 The purpose of the risk mitigation plan is to provide the most cost-effective reduction in personal injuries, financial losses, and damages to new and existing constructed facilities. Thus, the risk mitigation plan incorporates perspectives from multiple stakeholders—owners and managers, occupants and users, and other affected parties—in addressing natural and man-made hazards.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers minimum requirements for hazard mitigation in propulsion systems installed on small aeroplanes. The applicant for a design approval must seek the individual guidance to their respective civil aviation authority (CAA) body concerning the use of this specification as part of a certification plan.1.1 This specification covers minimum requirements for hazard mitigation in propulsion systems installed on small aeroplanes.1.2 The applicant for a design approval must seek the individual guidance to their respective CAA body concerning the use of this standard as part of a certification plan. For information on which CAA regulatory bodies have accepted this standard (in whole or in part) as a means of compliance to their Small Aircraft Airworthiness regulations (Hereinafter referred to as “the Rules”), refer to ASTM F44 webpage (www.ASTM.org/COMITTEE/F44.htm) which includes CAA website links.1.3 Units—The values stated are SI units followed by imperial units in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There are two primary types of vapor mitigation systems: Active and Passive (Table 1). Active vapor mitigation systems include: Sub-Slab Depressurization (SSD), Sub-Membrane Depressurization (SMD), Sub-Membrane Pressurization, Block-Wall Depressurization, Drain-tile Depressurization, Building Pressurization, Heat-Exchange Systems, and Indoor Air Treatment. Passive vapor mitigation systems include: Passive Venting, Floor Sealants, Vapor Barriers, and Increased Ventilation. Vapor mitigation systems may also consist of a combination of active and passive technologies.5.2 Development and implementation of a LTM Plan is important for ensuring the long-term protectiveness of the mitigation systems.5.3 The approach presented in this guide is a practical and streamlined process for establishing long-term monitoring requirements, monitoring time frames, and factors needed to determine when the use of a vapor mitigation system is no longer needed.5.4 This guide is intended to be used by environmental professionals including: consultants, building managers, local or regional governing or regulatory agencies, that are installing vapor mitigation systems, conducting monitoring of the vapor barriers, or developing LTM Plans for vapor mitigation systems. Vapor mitigation system installation and LTM activities should only be carried out by environmental professionals who are trained in the proper application of vapor mitigation systems and experienced in the monitoring described in this guide, as applicable.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.(A) Initial Verification (System Startup)—Period of time immediately following system startup.(B) Operational Monitoring—Period of time needed to verify that the system is operating within requirements through typically expected annual conditions.(C) Long-Term Monitoring—Period of time following operational monitoring through system decommissioning.(D) Additional testing—These are actions that may need to be taken if there is a problem with the system or there is a change to the building/system.1.1 This guide presents factors to consider when developing Long-Term Monitoring (LTM) Plans for monitoring the performance of both active and passive vapor mitigation systems in buildings. This guide will also assist in developing appropriate performance standards to make sure that vapor mitigation systems remain protective of human health. Active and passive vapor mitigation systems have been used for a number of years on contaminated properties where residual volatile contaminants remain in the ground. This guide discusses a variety of vapor mitigations systems; however, its focus is on the development of long-term monitoring plans for vapor mitigation systems that are designed to remain in place for multiple years.1.2 A LTM Plan provides clear performance goals for a vapor mitigation system which help to reduce potential confusion and ineffective project management. The LTM Plan also defines performance monitoring time frames to efficiently test the vapor mitigation systems’ effectiveness without unnecessary and costly over-testing. This will also promote consistent monitoring. Vapor mitigation systems are often installed without adequate consideration of the long-term monitoring requirements necessary to make sure that they remain protective of human health for as long as the system remains in place. This guidance addresses the requirements of the LTM Plan to monitor a vapor mitigation system’s continued effectiveness. Installation verification that the vapor mitigation system was installed correctly is typically addressed in the Remedial Design stage of a contaminated Property Management and is not covered in this document.1.3 LTM Plan limitations, constraints and potential sources of error are discussed in this standard. This guide does not endorse a mitigation system vendor or testing of vapor mitigation systems. However, this guide does provide a reference for the common procedures for testing vapor mitigation systems and related terms, as appropriate.1.4 Units—The values stated in either International System (SI) units or English units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard. The values given in parentheses are provided for informational purposes only and are not considered standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal of significant digits in the specified limit.1.6 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied with consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
16 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页