微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 689元 / 折扣价: 586

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 605元 / 折扣价: 515

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 481元 / 折扣价: 409

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

3.1 The modulus of rupture of carbon-containing refractories at elevated temperatures has become accepted as a useful measurement in quality control testing and in research and development. These measurements are also used to determine the suitability of particular products for various applications and to develop specifications. The sample may undergo some oxidation during the test.3.2 In 1988, ruggedness testing was conducted on this test procedure. The following variables were studied:3.2.1 Testing temperature (2525 (1385) versus 2575 °F (1413 °C)),3.2.2 Air atmosphere versus argon atmosphere in the furnace,3.2.3 Hold time prior to breaking the sample (12 versus 18 min), and3.2.4 Loading rate on the sample (175 (778) versus 350 lb/min (1556 N/min)).3.3 Resin-bonded magnesia-carbon brick containing approximately 17 % carbon after coking were tested in two separate ruggedness tests. Metal-free brick were tested in the first ruggedness test, while aluminum-containing brick were tested in the second. Results were analyzed at a 95 % confidence level.3.4 For the metal-free brick, the presence of an argon atmosphere and hold time had statistically significant effects on the modulus of rupture at 2550 °F (1400 °C). The argon atmosphere yielded a lower modulus of rupture. The samples tested in air had a well-sintered decarburized zone on the exterior surfaces, possibly explaining the higher moduli of rupture. The longer hold time caused a lower result for the metal-free brick.3.5 For the aluminum-containing brick, testing temperature, the presence of an argon atmosphere, and loading rate had statistically significant effects on the modulus of rupture at 2550 °F (1400 °C). The higher testing temperature increased the measured result, the presence of an argon atmosphere lowered the result, and the higher loading rate increased the result.1.1 This test method covers the determination of the modulus of rupture of carbon-containing refractories at elevated temperatures in air.1.2 The values stated in inch-pound units and degrees Fahrenheit are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The complex shear modulus of asphalt mixtures is a fundamental property of the material. Test results at critical temperatures (Tcritical) are used for specifications for some mixes. Mixtures with stiffer binders, aged mixes, mixtures with higher amounts of fines (material finer than 75 µ), and mixtures with lower voids all tend to have higher complex shear modulus values than mixtures with less stiff binders, unaged mixes, mixtures with low levels of fines, and higher air voids. In general, mixtures with higher complex shear modulus values at a given service temperature will exhibit lower permanent deformation values than similar mixtures tested at the same temperature that have lower complex shear modulus values.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the determination of the complex shear modulus of asphalt mixtures using torsion rectangular geometry on a dynamic shear rheometer (DSR). It is applicable to asphalt mixtures having complex shear modulus values greater than 1 × 104 Pa when tested over a range of temperatures from –40 °C to 76 °C at frequencies of 0.01 to 25 Hz and strains of 0.0005 % to 0.1 %. The determination of complex shear modulus is typically determined at 20 °C to 70 °C at 0.01 % strain at ten discrete frequency values covering 0.01 to 10 Hz. From these data, temperature or frequency master curves can be generated as required. This test method is intended for determining the complex shear modulus of asphalt mixtures as required for specification testing or quality control of asphalt mixture production.1.2 This test method is appropriate for laboratory-prepared and compacted mixtures, field-produced and laboratory-compacted mixtures or field cores, regardless of binder type or grade and regardless of whether RAP is used in the mixture. Due to the geometry of the specimens being tested this test method is not applicable to open-graded or SMA mixtures. It has been found to be appropriate for dense-graded mixtures, whether coarse- or fine-graded, with 19 mm or smaller nominal maximum aggregate size.1.3 Since a precision estimate for this standard has not been developed, the test method is to be used for research and informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
77 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页