微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Intact block samples are suitable for laboratory tests where large-sized samples of intact material are required or where such sampling is more practical than conventional tube sampling (Practices D1587/D1587M and D6519), or both.4.2 The intact block method of sampling is advantageous where the soil to be sampled is near the ground surface. It is the best available method for obtaining large intact samples of very stiff and brittle soils, partially cemented soils, and some soils containing coarse gravel.4.3 Excavating a column of soil will relieve stresses in the soil and may result in some expansion of the soil and a corresponding decrease in its unit weight (density) or increase in sampling disturbance, or both. Usually the expansion is small in magnitude because of the shallow depth. Stress changes alone can cause enough disturbances in some soils to significantly alter their engineering properties.4.4 The chain saw has proved advantageous in sampling difficult soils, which are blocky, slickensided, or materials containing alternating layers of hard and soft material.3 The chain saw uses a special carbide-tipped chain.4NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective sampling. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These practices outline the procedures for obtaining intact block (cubical and cylindrical) soil samples.1.2 Intact block samples are obtained for laboratory tests to determine the strength, consolidation, permeability, and other geotechnical engineering or physical properties of the intact soil.1.3 Two sampling practices are presented. Practice A covers cubical block sampling, while Practice B covers cylindrical block sampling.1.4 These practices usually involve test pit excavation and are limited to relatively shallow depths. Except in the case of large diameter (that is, diameters greater than 0.8 m [2.5 ft]) bored shafts of circular cross-section in unsaturated soils, for depths greater than about 1 to 11/2 meters [3 to 5 ft] or depths below the water table, the cost and difficulties of excavating, cribbing, and dewatering generally make block sampling impractical and uneconomical. For these conditions, use of a thin-walled push tube soil sampler (Practice D1587/D1587M), a piston-type soil sampler (Practice D6519), or Hollow-Stem Auger (Practice D6151/D6151M), Dennison, or Pitcher-type soil core samplers, or freezing the soil and coring may be required.1.5 These practices do not address environmental sampling; consult Guides D6169/D6169M and D6232 for information on sampling for environmental investigations.1.6 Successful sampling of granular materials requires sufficient cohesion, cementation, or apparent cohesion (due to moisture tension (suction)) of the soil for it to be isolated in a column shape without undergoing excessive deformations. Additionally, care must be exercised in the excavation, preservation and transportation of intact samples (see Practice D4220/D4220M, Group D).1.7 The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026 unless superseded by this standard.1.8.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.9 These practices offer a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of these practices may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The procedure for estimating long-term hydrostatic strength or pressure-strength is essentially an extrapolation with respect to time of a stress-time or pressure-time regression line based on data obtained in accordance with Test Method D1598. Stress or pressure-failure time plots are obtained for the selected temperature and environment: the extrapolation is made in such a manner that the long-term hydrostatic strength or pressure strengthis estimated for these conditions.NOTE 3: Test temperatures should preferably be selected from the following: 68 °F (20 °C), 73 °F (23 °C), 140 °F (60 °C), 176 °F (80 °C), 180 °F (82 °C), and 200 °F (93 °C). It is strongly recommended that data be generated at 73 °F (23 °C) for comparative purposes.4.2 The hydrostatic or pressure design basis is determined by considering the following items and evaluating them in accordance with 5.4.4.2.1 Long-term hydrostatic strength or hydrostatic pressure-strength at 100 000 h,4.2.2 Long-term hydrostatic strength or hydrostatic pressure-strength at 50 years, and4.2.3 Stress that will give 5 % expansion at 100 000 h.4.2.4 The intent is to make allowance for the basic stress-strain characteristics of the material, as they relate to time.4.3 Results obtained at one temperature cannot, with any certainty, be used to estimate values for other temperatures. Therefore, it is essential that hydrostatic or pressure design bases be determined for each specific kind and type of plastic compound and each temperature. Estimates of long-term strengths of materials can be made for a specific temperature provided that calculated values, based on experimental data, are available for temperatures both above and below the temperature of interest.4.4 Hydrostatic design stresses are obtained by multiplying the hydrostatic design basis values by a service (design) factor.4.5 Pressure ratings for pipe may be calculated from the hydrostatic design stress (HDS) value for the specific material used to make the pipe, and its dimensions using the equations in 3.1.11.4.5.1 Pressure ratings for multilayer pipe may be calculated by multiplying the pressure design basis (PDB) by the appropriate design factor (DF).1.1 This test method describes two essentially equivalent procedures: one for obtaining a long-term hydrostatic strength category based on stress, referred to herein as the hydrostatic design basis (HDB); and the other for obtaining a long-term hydrostatic strength category based on pressure, referred to herein as the pressure design basis (PDB). The HDB is based on the material's long-term hydrostatic strength (LTHS),and the PDB is based on the product's long-term hydrostatic pressure-strength (LTHSP). The HDB is a material property and is obtained by evaluating stress rupture data derived from testing pipe made from the subject material. The PDB is a product specific property that reflects not only the properties of the material(s) from which the product is made, but also the influence on product strength by product design, geometry, and dimensions and by the specific method of manufacture. The PDB is obtained by evaluating pressure rupture data. The LTHS is determined by analyzing stress versus time-to-rupture (that is, stress-rupture) test data that cover a testing period of not less than 10 000 h and that are derived from sustained pressure testing of pipe made from the subject material. The data are analyzed by linear regression to yield a best-fit log-stress versus log time-to-fail straight-line equation. Using this equation, the material's mean strength at the 100 000-h intercept (LTHS) is determined by extrapolation. The resultant value of the LTHS determines the HDB strength category to which the material is assigned. The LTHSP is similarly determined except that the determination is based on pressure versus time data that are derived from a particular product. The categorized value of the LTHSP is the PDB. An HDB/PDB is one of a series of preferred long-term strength values. This test method is applicable to all known types of thermoplastic pipe materials and thermoplastic piping products. It is also applicable for any practical temperature and medium that yields stress-rupture data that exhibit an essentially straight-line relationship when plotted on log stress (pound-force per square inch) or log pressure (pound-force per square in. gage) versus log time-to-fail (hours) coordinates, and for which this straight-line relationship is expected to continue uninterrupted through at least 100 000 h.1.2 Unless the experimentally obtained data approximate a straight line, when calculated using log-log coordinates, it is not possible to assign an HDB/PDB to the material. Data that exhibit high scatter or a “knee” (a downward shift, resulting in a subsequently steeper stress-rupture slope than indicated by the earlier data) but which meet the requirements of this test method tend to give a lower forecast of LTHS/LTHSP. In the case of data that exhibit excessive scatter or a pronounced “knee,” the lower confidence limit requirements of this test method are not met and the data are classified as unsuitable for analysis.1.3 A fundamental premise of this test method is that when the experimental data define a straight-line relationship in accordance with this test method's requirements, this straight line may be assumed to continue beyond the experimental period, through at least 100 000 h (the time intercept at which the material's LTHS/LTHSP is determined). In the case of polyethylene piping materials, this test method includes a supplemental requirement for the “validating” of this assumption. No such validation requirements are included for other materials (see Note 1). Therefore, in all these other cases, it is up to the user of this test method to determine based on outside information whether this test method is satisfactory for the forecasting of a material's LTHS/LTHSP for each particular combination of internal/external environments and temperature.NOTE 1: Extensive long-term data that have been obtained on commercial pressure pipe grades of polyvinyl chloride (PVC), polybutylene (PB), and cross linked polyethylene (PEX) materials have shown that this assumption is appropriate for the establishing of HDB's for these materials for water and for ambient temperatures. Refer to Note 2 and Appendix X1 for additional information.1.4 The experimental procedure to obtain individual data points shall be as described in Test Method D1598, which forms a part of this test method. When any part of this test method is not in agreement with Test Method D1598, the provisions of this test method shall prevail.1.5 General references are included at the end of this test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only and are not considered the standard.NOTE 2: Over 3000 sets of data, obtained with thermoplastic pipe and piping assemblies tested with water, natural gas, and compressed air, have been analyzed by the Plastic Pipe Institute's (PPI) Hydrostatic Stress Board2. None of the currently commercially offered compounds included in PPI TR-4, “PPI Listing of Hydrostatic Design Basis (HDB), Hydrostatic Design Stress (HDS), Strength Design Basis (SDB), Pressure Design Basis (PDB) and Minimum Required Strength (MRS) Ratings for Thermoplastic Piping Materials or Pipe” exhibit knee-type plots at the listed temperature, that is, deviate from a straight line in such a manner that a marked drop occurs in stress at some time when plotted on equiscalar log-log coordinates. Ambient temperature stress-rupture data that have been obtained on a number of the listed materials and that extend for test periods over 120 000 h give no indication of “knees.” However, stress-rupture data which have been obtained on some thermoplastic compounds that are not suitable or recommended for piping compounds have been found to exhibit a downward trend at 23 °C (73 °F) in which the departure from linearity appears prior to this test method's minimum testing period of 10 000 h. In these cases, very low results are obtained or the data are found unsuitable for extrapolation when they are analyzed by this test method.Extensive evaluation of stress-rupture data by PPI and others has also indicated that in the case of some materials and under certain test conditions, generally at higher test temperatures, a departure from linearity, or “down-turn”, may occur beyond this test method's minimum required data collection period of 10 000 h. A PPI study has shown that in the case of polyethylene piping materials that are projected to exhibit a “down-turn” prior to 100 000 h at 73 °F, the long-term field performance of these materials is prone to more problems than in the case of materials which have a projected “down-turn” that lies beyond the 100 000-h intercept. In response to these observations, a supplemental “validation” requirement for PE materials has been added to this test method in 1988. This requirement is designed to reject the use of this test method for the estimating of the long-term strength of any PE material for which supplemental elevated temperature testing fails to validate this test method's inherent assumption of continuing straight-line stress-rupture behavior through at least 100 000 h at 23 °C (73 °F).When applying this test method to other materials, appropriate consideration should be given to the possibility that for the particular grade of material under evaluation and for the specific conditions of testing, particularly, when higher test temperatures and aggressive environments are involved, there may occur a substantial “down-turn” at some point beyond the data collection period. The ignoring of this possibility may lead to an overstatement by this test method of a material's actual LTHS/LTHSP. To obtain sufficient assurance that this test method's inherent assumption of continuing linearity through at least 100 000 h is appropriate, the user should consult and consider information outside this test method, including very long-term testing or extensive field experience with similar materials. In cases for which there is insufficient assurance of the continuance of the straight-line behavior that is defined by the experimental data, the use of other test methods for the forecasting of long-term strength should be considered (see Appendix X1).1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Fluid analysis is one of the pillars in determining fluid and equipment conditions. The results of fluid analysis are used for planning corrective maintenance activities, if required.5.2 The objective of a proper fluid sampling process is to obtain a representative fluid sample from critical location(s) that can provide information on both the equipment and the condition of the lubricant or hydraulic fluid.5.3 The additional objective is to reduce the probability of outside contamination of the system and the fluid sample during the sampling process.5.4 The intent of this guide is to help users in obtaining representative and repeatable fluid samples in a safe manner while preventing system and fluid sample contamination.1.1 This guide is applicable for collecting representative fluid samples for the effective condition monitoring of steam and gas turbine lubrication and generator cooling gas sealing systems in the power generation industry. In addition, this guide is also applicable for collecting representative samples from power generation auxiliary equipment including hydraulic systems.1.2 The fluid may be used for lubrication of turbine-generator bearings and gears, for sealing generator cooling gas as well as a hydraulic fluid for the control system. The fluid is typically supplied by dedicated pumps to different points in the system from a common or separate reservoirs. Some large steam turbine lubrication systems may also have a separate high pressure pump to allow generation of a hydrostatic fluid film for the most heavily loaded bearings prior to rotation. For some components, the lubricating fluid may be provided in the form of splashing formed by the system components moving through fluid surfaces at atmospheric pressure.1.3 Turbine lubrication and hydraulic systems are primarily lubricated with petroleum based fluids but occasionally also use synthetic fluids.1.4 For large lubrication and hydraulic turbine systems, it may be beneficial to extract multiple samples from different locations for determining the condition of a specific component.1.5 The values stated in SI units are regarded as standard.1.5.1 The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This practice covers procedures to perform JK-type inclusion ratings using automatic image analysis in accordance with microscopical methods A and D of Practice E 45.1.2 This practice deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability for any grade of steel or other alloy where the method is appropriate.1.3 The values stated in SI units are to be regarded as the standard. Values in parentheses are conversions and are approximate.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method provides a quantitative measure useful in the evaluation of the performance of fiber–reinforced concrete. It allows for comparative analysis among beams containing different fiber types, including materials, dimension and shape, and different fiber contents. Results can be used to optimize the proportions of fiber–reinforced concrete mixtures, to determine compliance with construction specifications, to evaluate fiber–reinforced concrete which has been in service, and as a tool for research and development of fiber–reinforced concrete (See Note 2).NOTE 2: Banthia and Dubey3 compared results using this test method with residual strengths at the same net deflections using a test protocol that is similar to that described in Test Method C1609/C1609M on 45 beams with a single fiber configuration at proportions of 0.1, 0.3, and 0.5 % by volume. The results by this test method were on average 6.4 % lower than by the procedure of Test Method C1609/C1609M.5.2 Test results are intended to reflect either consistency or differences among variables used in proportioning the fiber–reinforced concrete to be tested, including fiber type (material), fiber size and shape, fiber amount, beam preparation (sawed or molded), and beam conditioning.5.3 In molded beams fiber orientation near molded surfaces will be affected by the process of molding. For tests of fiber-reinforced concrete containing relatively rigid or stiff fibers of length greater than 35 mm [1.4 in.], the use of sawed beams cut from samples with an initial width and depth of at least 3 times the length of the fiber is required to minimize effects of fiber orientation. When sawed beams are employed, and to avoid the effects of fiber orientation, care shall be applied to ensure that the flexural tensile surface of the beam is a sawed surface.1.1 This test method covers the determination of residual strength of a fiber–reinforced concrete test beam. The average residual strength is computed using specified beam deflections that are obtained from a beam that has been cracked in a standard manner. The test provides data needed to obtain that portion of the load–deflection curve beyond which a significant amount of cracking damage has occurred and it provides a measure of post–cracking strength, as such strength is affected by the use of fiber–reinforcement.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 A large number of erosion control product manufacturers produce a variety of RECPs and HECPs that are designed to be applied to any land surface to stabilize soils and prevent erosion. Many of these products are engineered to absorb moisture and remain in place even under extreme rainfall events and are composed of substances that could go into solution with runoff. Based on the characteristics of these products and their intended and actual use in the environment, the most likely scenario through which aquatic organisms would be exposed to these products or their soluble components is through storm water runoff. Further, because such runoff events typically last for minutes to hours rather than days, use of acute (48 h) toxicity testing methodology is appropriate to model expected environment exposures.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice establishes the guidelines, requirements, and procedures for obtaining rainfall runoff of unvegetated rolled and hydraulic erosion control products (RECPs and HECPs) during bench-scale conditions from simulated rainfall to be sent out for acute ecotoxicity testing.1.2 This practice obtains unvegetated erosion control product (ECP) runoff from rainsplash-induced erosion under bench-scale conditions using bench-scale collection procedures.1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.4.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.5 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice may be applied when tristimulus colorimeters are used to measure the colors produced on self-luminous video display devices such as CRTs and flat-panel displays, including electroluminescent (EL) panels, light emitting diodes (LEDs) field emission displays (FEDs), and back-lit liquid crystal displays (LCDs). This practice is not meant to be a complete description of a procedure to measure the color coordinates of a display. Rather, it provides a method for obtaining more accurate results when certain conditions are met. It may be used by any person engaged in the measurement of color on display devices who has access to the requisite equipment.5.2 This practice defines a class of tristimulus colorimeters that may be said to be compatible with this practice.1.1 This practice is intended as an aid for improving the accuracy of colorimetric measurements made with tristimulus colorimeters on visual display units, such as cathode ray tubes (CRTs) and self-luminous flat-panel displays. It explains a useful step in the analysis of colorimetric data that takes advantage of the fact that light from such displays consists of an additive mixture of three primary colored lights. However, it is not a complete specification of how such measurements should be made.1.2 This practice is limited to display devices and colorimetric instruments that meet linearity criteria as defined in the practice. It is not concerned with effects that might cause measurement bias such as temporal or geometric differences between the instrument being optimized and the instrument used for reference.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the sonic velocity and approximate Young's modulus of refractory shapes at room temperature. Since this test is nondestructive, specimens may be used for other tests as desired.5.2 This test method is useful for research and development, engineering application and design, manufacturing quality and process control, and for developing purchasing specifications.1.1 This test method describes a procedure for measuring the sonic velocity in refractory materials at room temperature. The sonic velocity can be used to obtain an approximate value for Young's modulus.1.2 The sonic velocity may be measured through the length, thickness, and width of the specimen.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This test method covers the determination of the char density profile of a charred ablator. The total thickness of the char and degradation zone must be larger than the machining thicknesses required. Density variation throughout a charred ablator material is determined by successively measuring, machining, and weighing a sample of known size to obtain the density of the material removed by machining. The apparatus required for this method includes a laboratory balance capable of measuring to the nearest ten thousandth gram, and a machining technique capable of removing material in increments as small as a thousandth mm.1.1 This test method covers the determination of the char density profile of a charred ablator that can be used with the following limitations:1.1.1 The local surface imperfections must be removed, and the char must be able to be machined off in a plane parallel to the char-virgin material interface before the density profiles can be determined.1.1.2 The char must be strong enough to withstand the machining and handling techniques employed.1.1.3 The material should have orderly density variations. The total thickness of the char and degradation zone must be larger than the machining thicknesses required.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—Certain inch-pound equivalent units are included in parentheses for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is useful for establishing the hoop stress or internal pressure versus time-to-failure relationships, under selected internal and external environments which simulate actual anticipated product end-use conditions, from which a design basis for specific piping products and materials can be obtained. This practice defines an HDB for material in straight, hollow cylindrical shapes where hoop stress can be easily calculated, and a PDB for fittings and joints where stresses are more complex.5.1.1 An alternative design practice based on initial strain versus time-to-failure relationships employs a strain basis HDB instead of the stress basis HDB defined by this practice. The strain basis HDB is most often used for buried pipe designs with internal pressures ranging from 0 to 250 psig (1.72 MPa).5.2 To characterize fiberglass piping products, it is necessary to establish the stress versus cycles or time to failure, or pressure versus cycles or time to failure relationships over three or more logarithmic decades of time (cycles or hours) within controlled environmental parameters. Because of the nature of the test and specimens employed, no single line can adequately represent the data. Therefore, the confidence limits shall be established.5.3 Pressure ratings for piping of various dimensions at each temperature may be calculated using the HDS determined by testing one size of piping provided that the same specific process and material are used both for test specimens and the piping in question.5.4 Pressure ratings at each temperature for components other than straight hollow shapes may be calculated using the HDP determined by testing one size of piping provided that (1) the specific materials and manufacturing process used for the test specimens are used for the components, (2) for joints, the joining materials and procedures used to prepare the test specimens are used for field joining, and (3) scaling of critical dimensions is related to diameter and pressure rating of the component.NOTE 10: Scaling of fittings and joints should be further verified by short-time testing in accordance with Test Method D1599.5.5 Results obtained at one set of environmental conditions shall not be used for other conditions, except that higher temperature data can be used for design basis assignment for lower application temperatures. The design basis shall be determined for each specific piping product. Design and processing can significantly affect the long-term performance of piping products, and therefore shall be taken into consideration during any evaluation.5.6 This practice is valid for a given pipe or fitting only so long as the specimens are truly representative of that material and manufacturing process.5.6.1 Changes in materials or manufacturing processes will necessitate a reevaluation as described in Section 12.1.1 This practice establishes two procedures, Procedure A (cyclic) and Procedure B (static), for obtaining a hydrostatic design basis (HDB) or a pressure design basis (PDB) for fiberglass piping products, by evaluating strength-regression data derived from testing pipe or fittings, or both, of the same materials and construction, either separately or in assemblies. Both glass-fiber-reinforced thermosetting-resin pipe (RTRP) and glass-fiber-reinforced polymer mortar pipe (RPMP) are fiberglass pipe.NOTE 1: For the purposes of this standard, polymer does not include natural polymers.1.2 This practice can be used for the HDB determination for fiberglass pipe where the ratio of outside diameter to wall thickness is 10:1 or more.NOTE 2: This limitation, based on thin-wall pipe design theory, serves further to limit the application of this practice to internal pressures which, by the hoop-stress equation, are approximately 20 % of the derived hydrostatic design stress (HDS). For example, if HDS is 5000 psi (34 500 kPa), the pipe is limited to about 1000-psig (6900-kPa) internal pressure, regardless of diameter.NOTE 3: Where long (continuous) glass fibers are intentionally placed to resist the planned pressure load case (that is, free end pressure testing and 654.7° fiberglass windings) the results from this practice may be overly conservative in predicting long term fiberglass pipe performance when the same pipe is operated at lower (non-damaging) stresses typical in normal pipeline applications.NOTE 4: All data points in the analysis shall be of the same failure mode. Where plastic creep of the resin leading to pipe failure is precluded by unintended resin matrix cracking or other unanticipated modes of failure, this practice may not accurately represent the pipe’s life expectancy.1.3 This practice provides a PDB for complex-shaped products or systems where complex stress fields seriously inhibit the use of hoop stress.1.4 Specimen end closures in the underlying test methods may be either restrained or free, leading to certain limitations.1.4.1 Restrained Ends—Specimens are stressed by internal pressure only in the hoop direction, and the HDB is applicable for stresses developed only in the hoop direction.1.4.2 Free Ends—Specimens are stressed by internal pressure in both hoop and longitudinal directions, such that the hoop stress is twice as large as the longitudinal stress. This practice may not be applicable for evaluating stresses induced by loadings where the longitudinal stress exceeds 50 % of the HDS.1.5 The values stated in inch-pound units are to be regarded as the standard. The values in parentheses are given for information purposes only.NOTE 5: There is no known ISO equivalent to this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides a procedure by which samples of GCL should be obtained for laboratory testing. The practice applies to materials obtained prior to installation (either at a job site or at a production facility) or exhumed material after installation.4.2 Only GCL samples obtained in accordance with 5.1 of this practice will be considered representative of the actual manufactured GCL for quality assurance/quality control (QA/QC) purposes.4.3 The quantity of GCL received by the laboratory should be sufficient for the preparation of several representative test specimens for the standardized physical, hydraulic, and mechanical tests to be performed on the GCLs.4.4 The procedures in this practice should be used by plant and field personnel for obtaining GCL samples for laboratory testing.1.1 This practice covers procedures for sampling geosynthetic clay liners (GCLs) for the purpose of laboratory testing. These procedures are designed to ensure that representative samples are obtained and properly packaged for submittal to a testing laboratory.1.2 The procedures in this practice may be applied to either samples of unhydrated GCLs obtained at the project site prior to installation (or at the production facility, prior to shipment to the project site) or samples exhumed from a project site after installation.1.3 It is assumed that the number of samples to be obtained has already been determined in the project specification, standard test method, or by prior agreement between the purchaser and seller. This practice covers only the methods for obtaining a pre-arranged number of samples and does not describe methods for obtaining individual specimens from the sample.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The most general and reliable methods for obtaining CIE tristimulus values or, through transformation of them, other coordinates for describing the colors of objects are by the use of spectrometric data. Colorimetric data are obtained by combining object spectral data with data representing a CIE standard observer and a CIE standard illuminant, as described in Practice E308.5.2 This practice provides procedures for selecting the operating parameters of spectrometers used for providing data of the desired precision. It also provides for instrument calibration by means of material standards, and for selection of suitable specimens for obtaining precision in the measurements.1.1 This practice covers the instrumental measurement requirements, calibration procedures, and material standards needed to obtain precise spectral data for computing the colors of objects.1.2 This practice lists the parameters that must be specified when spectrometric measurements are required in specific methods, practices, or specifications.1.3 Most sections of this practice apply to both spectrometers, which can produce spectral data as output, and spectrocolorimeters, which are similar in principle but can produce only colorimetric data as output. Exceptions to this applicability are noted.1.4 This practice is limited in scope to spectrometers and spectrocolorimeters that employ only a single monochromator. This practice is general as to the materials to be characterized for color.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Infrared spectroscopy is the most widely used technique for identifying organic and inorganic materials. This practice describes methods for the proper application of infrared spectroscopy.1.1 This practice covers the spectral range from 4000 cm−1 to 50 cm−1 and includes techniques that are useful for qualitative analysis of liquid-, solid-, and vapor-phase samples by infrared spectrometric techniques for which the amount of sample available for analysis is not a limiting factor. These techniques are often also useful for recording spectra at frequencies higher than 4000 cm–1, in the near-infrared region.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautions are given in 6.5.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice is typically used to obtain in-service lubricating grease samples from machinery.4.2 In this practice, a consistent and repeatable method is outlined for obtaining trendable samples from the following applications including motor-operated valves, gearboxes, pillow-block bearings, electric motors, exposed bearings, open gears, or failed grease-lubricated components. This allows for analysis and inspection of in-service lubricating grease that aids in predicting the life and condition of the grease-lubricated component. This information can be combined with other technologies such as infrared imaging, vibration analysis, and ultrasonic vibration analysis to predict when a machine may fail. The knowledge gained by the aforementioned analyses, in addition to the knowledge gained from the in-service lubricating grease analysis and inspection, may allow for more overall uptime by aiding in the prediction of grease-lubricated component failures as part of a predictive maintenance schedule. The prediction of a failing grease-lubricated component will also improve the level of safety of all who work around the component.1.1 This practice covers the method to obtain a trendable in-service lubricating grease sample from the following configurations including motor-operated valves, gearboxes, pillow-block bearings, electric motors, exposed bearings, open gears, or failed grease-lubricated components.1.2 In some cases, it may be necessary to take more than one sample from a piece of equipment to obtain more trendable results. Examples of this could be a large bearing that does not fully rotate, such as a slew bearing, or one in which sufficient mixing does not otherwise occur.1.3 Samples taken in the above manner may need to be mixed to form a more homogeneous sample. This may also be true of other samples such as those taken from open face bearings.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. The exception to this is a standard English units thread for which there is no metric equivalent.NOTE 1: The standard pipe thread referred to is the national pipe thread tapered thread.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice allows the collection of a representative sample of LPG that may contain trace volatile dissolved components such as methane, ethane, and nitrogen. Sampling by Practice D1265 can result in a small, but predictable, loss of these lighter components. Practice D1265 is suitable for collecting samples for routine specification testing, as the small loss of light components is not significant under Specification D1835 specification requirements. Practice D3700 is recommended whenever highly accurate determination of light components is required. For example, compositions determined on samples collected according to Practice D3700 may be used to establish the product value of NGL mixtures (see Appendix X1).1.1 This practice covers the equipment and procedures for obtaining a representative sample of liquefied petroleum gas (LPG), such as specified in ASTM Specification D1835, GPA 2140, and comparable international standards. It may also be used for other natural gas liquid (NGL) products that are normally single phase (for example, NGL mix, field butane, and so forth), defined in other industry specifications or contractual agreements, and for volatile (higher vapor pressure) crude oils.NOTE 1: Some floating piston cylinders have such tight piston seals that the vapor pressure of some high vapor pressure crude oils may not be sufficient to allow sampling without a handle to move the piston. An alternative sampling practice for UN Class 3 liquids (under 300 kPa at 52 °C) is Practice D8009, which utilizes a Manual Piston Cylinder (MPC) sampler.1.2 This practice is not intended for non-specification products that contain significant quantities of undissolved gases (N2, CO2), free water or other separated phases, such as raw or unprocessed gas/liquids mixtures and related materials. The same equipment can be used for these purposes, but additional precautions are generally needed to obtain representative samples of multi-phase products (see Appendix X1).1.3 This practice includes recommendations for the location of a sample point in a line or vessel. It is the responsibility of the user to ensure that the sampling point is located so as to obtain a representative sample.1.4 The values stated in SI units are to be regarded as standard.1.4.1 Exception—The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
26 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页