微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This practice is for use by design engineers, specifiers, regulatory agencies, owners, installers, and inspection organizations who are involved in the rehabilitation of pipes through the use of a Mechanical Trenchless Point Repair Sleeve with a Locking Gear Mechanism for Pipes of Varying Inner Diameter and Offset Joints within a damaged existing pipe.4.2 This practice applies to the following types of defects in pipe that can be repaired: longitudinal, radial and circumferential cracks, fragmentation, leaking joints, displacement or joint misalignment, closing or sealing unused laterals, corrosion, spalling, wear, leaks in the barrel of the pipe, deformation in the pipe and root penetration. There are no limitations on the diameters of the laterals that can be sealed. The degree of deformation that can be repaired is dependent on the minimum and maximum diameters for which the sleeve is applicable as listed in the tables of dimensions shown in Appendix X1 but shall never exceed 5 %.4.3 This practice applies to pipes made of vitrified clay, concrete, reinforced concrete, plastics, glass reinforced plastics, cast iron, ductile iron and steel for both pressure and non-pressure applications.4.4 In this practice, no issues of snagging waste or build-up of sludge or sediment have been recorded to date; the performance of this sleeve, however, depends on many factors; therefore, past operational records may not include all possible future conditions under which the user may install these sleeves.4.5 The suitability of the technology covered in this practice for a particular application shall be jointly decided by the authority, the engineer and the installer.1.1 This practice establishes minimum requirements for good practices for the materials and installation of mechanical trenchless repair sleeve with a locking gear mechanism for pipes of varying inner diameter and offset joints in the range of 6 in. to 72 in. (150 mm to 1800 mm).1.2 This practice applies to storm, potable water, wastewater and industrial pipes, conduits and drainage culverts.1.3 When the specified materials are used in manufacturing the sleeve and installed in accordance with this practice, the sleeve shall extend over a predetermined length of the host pipe as a continuous, tight fitting, corrosion resistant and verifiable non-leaking pipe repaired using one or more pieces of the repair sleeve mechanism. The maximum internal pressure this sleeve can carry depends on the diameter and the wall thickness, ranging from 10 to 15 bars; the external pressure shall not exceed 1.5 bars.1.4 All materials in contact with potable water shall be certified to meet NSF/ANSI 61/372.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Particular attention is drawn to those safety regulations and requirements involving entering into and working in confined spaces.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice may be used for approximating a limiting design stress at room temperature and, in some cases, for approximating the range of elastic behavior. Elastic limit, or the greatest stress that a material is capable of sustaining without any permanent strain remaining upon complete release of the stress, is a more technically accurate design parameter; however, the elastic limit is extremely difficult to measure in routine testing. Caution should be used in applying such values to predict the behavior of flat or wire springs in bending, torsion or other stress modes, or at temperatures other than that at which the determination is made.1.1 This practice establishes the requirements for determining offset yield strength (0.01 %, 0.02 %, and 0.05 % offset) at room temperature. It is intended for copper alloys in tempers commonly used for spring applications, and materials thicker than 0.010 in. (0.25 mm).1.1.1 The primary application of this practice is intended for flat strip materials that are used for springs; however, this practice can be used for other product forms, such as wire, rod, and bar.1.2 Units—Values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units which are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method is the procedure of choice for determining volatile content of sheet-fed and coldset web offset inks. This information is useful to the ink manufacturer and user and to environmental interests as part of the determination of the mass of volatile organic compounds emitted from the ink.NOTE 3: Since these inks do not contain water or any materials currently classified by US EPA as negligibly photochemically reactive (exempt solvents), volatile organic compound content is the same as volatile content. The volatile organic compounds in these inks are high boiling hydrocarbon oils which are, according to US EPA guidelines, 95 % retained in the printed substrate or oxidized into the ink film. Therefore, the mass of volatile organic compound emitted from the ink would be calculated as only 5 % of the volatile organic compound content of the ink as derived from the results of this test method.1.1 This test method describes a procedure for determination of the weight percent volatile content of sheet-fed and coldset web offset printing inks. Test specimens are heated at 110 °C ± 1 °C for 60 min.NOTE 1: Coldset web offset printing is often (also) referred to as non-heatset web offset printing.1.2 This test method is also applicable to sheet-fed and coldset web offset printing ink vehicles.NOTE 2: Vehicle is the liquid portion of the printing ink. Any substance that is dissolved in the liquid portion of the ink is a part of the vehicle.1.3 This test method is not applicable to ultra-violet (UV) or electron beam cured materials, which must be cured by exposure to UV light or an electron beam as part of the test for volatile content.1.4 This test method is based on Test Method D2369, in which the allowable ranges are ±0.1 g for specimen weight and ±5 °C for oven temperature. Interlaboratory studies have shown that specimen weight and oven temperature must both be more tightly controlled in order to improve the precision of test results for sheet-fed and coldset web-offset inks. Such inks typically contain a wide range of high-boiling hydrocarbons and often have a volatile content below 25 %.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement see 7.5.11.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
4 条记录,每页 10 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页