微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method is intended as a fast and economical determination of the nonvolatile content of liquid phenolic resins used for wood laminating and is useful for general comparative purposes. For greater precision and accuracy, Test Method D1582 is recommended.1.1 This test method covers the recommended procedure for the determination of the nonvolatile or total solids content of liquid phenolic resins used for wood laminating.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 For molded phenolic products, acetone extraction shall be considered solely as a quantitative expression of a property normally associated with degree of cure. There is no demonstrably rigorous relation between the optimum mechanical and electrical properties of a well-cured piece and the numerical value of the acetone test. The amount of acetone-soluble matter is affected by: (1) nature of resin and filler, (2) lubricant, (3) molding temperature, (4) length of cure, (5) thickness of the section from which sample is taken, (6) nature of molded piece, (7) technique used in molding, (8) distribution of fines in the material to be extracted, and (9) method of grinding the specimen. These variations under some conditions will cause a difference of 3 to 4 % in acetone-extractable matter. For this reason, the test method shall be used only as a comparative test for measuring undercure.4.2 For laminated phenolic products, acetone extraction indicates change in stage of cure, change in resin content, change in type of resin used, presence of plasticizers or other acetone-extractable addition agents, and is affected in general by the same factors as stated in 6.11.1 This test method covers the determination of the amount of acetone-soluble matter in molded or laminated phenolic products.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method is similar to ISO 308.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of the amount of apparent free phenol in synthetic phenolic resins or solutions used for coating purposes. The test method for isolation of the free phenol applies to all the commonly used resins except those containing p-phenyl-phenol. Test Method A applies to the simpler phenols up to and including the xylenols; Test Method B applies to the common alkylated phenols. >1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. >

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Separation and identification of stabilizers used in the manufacture of polypropylene is necessary in order to correlate performance properties with polymer composition. This test method provides a means to determine erucamide slip, Vitamin E, Irgafos 168, Irganox 3114, Irganox 1010, and Irganox 1076 levels in polypropylene samples. This test method is also applicable for the determination of other antioxidants, such as Ultranox 626, Ethanox 330, Santanox R, and BHT, but the applicability of this test method has not been investigated for these antioxidants.5.2 The additive-extraction procedure is made effective by the insolubility of the polymer sample in solvents generally used for liquid chromatographic analysis.5.3 Under optimum conditions, the lowest level of detection for a phenolic antioxidant is approximately 2 ppm.NOTE 2: Other methods that have been used successfully to remove additives from the plastics matrix include thin film, microwave, ultrasonic, and supercritical fluid extractions. Other methods have been used successfully to separate additives including SFC and capillary GC.5.4 Irgafos 168 is a phosphite antioxidant. Phosphites are known to undergo both oxidation and hydrolysis reactions. Less Irgafos 168 will be determined in the polymer when oxidation occurs during processing. The HPLC separation is capable of separating the phosphite, phosphate (oxidation product), and hydrolysis product and quantify them if standards are obtained. No significant breakdown of the phosphite antioxidant has been seen due to either extraction technique or the separation presented in this standard.1.1 This test method covers a liquid-chromatographic procedure for the separation of some additives currently used in polypropylene. These additives are extracted with a cyclohexane:methylene chloride mixture using either reflux or ultrasonic bath prior to liquid-chromatographic separation. The ultraviolet absorbance (200 nm) of the compound(s) is measured, and quantitation is performed using the internal standard method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9.NOTE 1: There is no known ISO equivalent to this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The quantitative determination of hindered phenol antioxidants in a new turbine oil measures the amount of this material that has been added to the oil as protection against oxidation. Beside phenols, turbine oils can be formulated with other antioxidants such as amines which can extend the oil life. In used oil, the determination measures the amount of original (phenolic) antioxidant remaining after oxidation have reduced its initial concentration. This test method is not designed or intended to detect all of the antioxidant intermediates formed during the thermal and oxidative stressing of the oils, which are recognized as having some contribution to the remaining useful life of the used or in-service oil. Nor does it measure the overall stability of an oil, which is determined by the total contribution of all species present. Before making final judgment on the remaining useful life of the used oil, which might result in the replacement of the oil reservoir, it is advised to perform additional analytical techniques (in accordance with Practices D6224 and D4378), having the capability of measuring remaining oxidative life of the used oil.5.1.1 This test method is applicable to non-zinc turbine oils. These are refined mineral oils containing rust and oxidation inhibitors, but not antiwear additives. This test method has not yet been established with sufficient precision for antiwear oils.5.2 This test method is also suitable for manufacturing control and specification acceptance.5.3 When a voltammetric analysis is obtained for a turbine oil inhibited with a typical hindered phenol antioxidant, there is an increase in the current of the produced voltammogram between 3 s to 5 s (or 0.3 V to 0.6 V applied voltage) (see Note 1) in the basic test solution (Fig. 1—x-axis 1 second = 0.1 V). Hindered phenol antioxidants detected by voltammetric analysis include, but are not limited to, 2,6-di-tert-butyl-4-methylphenol; 2,6-di-tert-butylphenol and 4,4'-methylenebis(2,6-di-tert-butylphenol).NOTE 1: Voltages listed with respect to reference electrode. The voltammograms shown in Figs. 1 and 2 were obtained with a platinum reference electrode and a voltage scan rate of 0.1 V/s.FIG. 2 Amine and Hindered Phenols Peaks in the Basic Test Solution with Blank Response ZeroedNOTE 1: x-axis = time (seconds) and y-axis is current (arbitrary units). Top line in Fig. 2 is fresh oil, and lower line is used oil.5.4 For non-zinc turbine oils containing aromatic (aryl) amine compounds (antioxidants and corrosion inhibitors), there is an increase in the current of the produced voltammogram between 7 s to 11 s (0.7 V to 1.1 V applied voltage in Fig. 2) (see Note 1) which does not interfere with the hindered phenol measurement in the basic test solution. For the measurement of these aromatic amine antioxidants, refer to Test Method D6971, where the neutral test solution shall be used.1.1 This test method covers the voltammetric determination of hindered phenol antioxidants in new or in-service non-zinc turbine oils in concentrations from 0.0075 % by weight up to concentrations found in new oils by measuring the amount of current flow at a specified voltage in the produced voltammogram.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers basic characteristics required for porous laminated phenolic materials intended for use as instrument and thin-section ball-bearing retainers (cages) and the methods of determining these characteristics.1.2 Forms—Sheets, rolled tubes, molded tubes, and rods are recommended forms of laminated material covered by this specification.1.3 Intended Use—Materials produced to this specification are intended for use as ball-bearing retainers (cages). Temperature range is limited to 250 °F (117 °C) and below.1.4 Units—The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Separation and identification of stabilizers used in the manufacture of linear low-density polyethylene are necessary in order to correlate performance properties with polymer composition. This test method provides a means to determine BHT, BHEB, Isonox 129, erucamide slip, Irganox 1010, and Irganox 1076 levels in linear low-density polyethylene samples. This test method should be applicable for the determination of other antioxidants such as Ultranox 626, Ethanox 330, Santanox R, and Topanol CA, but the applicability of this test method has not been investigated for these antioxidants.The additive extraction procedure is made effective by the insolubility of the polymer sample in solvents generally used for liquid chromatographic analysis.Under optimum conditions, the lowest level of detection for a phenolic antioxidant is approximately 2 ppm.Other methods that have been successfully used to remove additives from the plastics matrix include thin film, microwave, ultrasonic, and supercritical fluid extractions. Other methods have been successfully used to separate additive including SFC and GC.1.1 This test method covers a liquid-chromatographic procedure for the separation of some additives currently used in linear low-density polyethylene. These additives are extracted with either isobutanol or isopropanol prior to liquid-chromatographic separation. The ultraviolet absorbance (200 nm) of the compound(s) is measured; quantitation is performed using the internal standard method.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9.Note 1—There is no equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Separation and identification of stabilizers used in the manufacture of HDPE are necessary in order to correlate performance properties with polymer composition. This test method provides a means of determining BHT, BHEB, Isonox 129, Irganox 1010, and Irganox 1076 levels in HDPE samples. This test method should be applicable for the determination of other antioxidants such as Cyanox 425, Cyanox 1790, Cyanox 2246, Ultranox 236, and Ultranox 246, but the applicability of this test method has not been investigated for these antioxidants. The additive-extraction procedure is made effective by the insolubility of the polymer sample in solvents generally used for liquid chromatographic analysis. The lowest level of detection for a phenolic antioxidant is approximately 2 ppm under optimum conditions. Other procedures that have been used successfully to remove additives from the plastics matrix include thin-film, microwave,10 ultrasonic,11 and supercritical fluid extractions.11 , 12 , 13 Procedures other than HPLC have been used successfully to separate additives, including SFC13 and capillary GC.14 1.1 This test method covers a liquid-chromatographic procedure for the separation of some additives currently used in high-density polyethylene. These additives are extracted with cyclohexane prior to liquid-chromatographic separation. The ultraviolet absorbance (200 nm) of the compound(s) is measured; quantitation is performed using the internal standard method. Note 1—There is no similar or equivalent ISO standard. 1.2 The values stated in SI units are to be regarded as the standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D1783-01(2020) Standard Test Methods for Phenolic Compounds in Water Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Phenolic compounds are sometimes found in surface waters from natural and industrial sources. Their presence in streams and other waterways frequently will cause off flavor in fish tissue and other aquatic food.5.2 Chlorination of waters containing phenols may produce chlorophenols that are odoriferous and objectionable tasting.1.1 These test methods cover the preparation of the sample and the determination of the concentration of phenolic compounds in water. They are based on the color reaction of phenol (C6H5OH) with 4-aminoantipyrine and any color produced by the reaction of other phenolic compounds is reported as phenol. The concentration of phenol measured represents the minimum concentration of phenolic compounds present in the sample.1.2 Phenolic compounds with a substituent in the para position may not quantitatively produce color with 4-aminoantipyrine. However, para substituents of phenol such as carboxyl, halogen, hydroxyl, methoxyl, or sulfonic acid groups do produce color with 4-aminoantipyrine.1.3 These test methods address specific applications as follows:  Range Sections     Test Method A—Chloroform Extraction 0 to 100 μg/L 11 to 17Test Method B—Direct Photometric >0.1 mg/L(100 μg/L) 18 to 241.4 It is the users’ responsibility to assure the validity of the standard test method for use in their particular matrix of interest.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see 6.3.2 and 8.6.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers a procedure to determine qualitatively the presence of methylol group in phenol-formaldehyde resins. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
15 条记录,每页 10 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页