微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 605元 / 折扣价: 515

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏

4.1 Vascular stents are intended for permanent implant in the human vasculature (native or graft) for the purposes of maintaining vessel patency. The dimensional attributes of vascular stents are critical parameters that aid clinicians in the selection of devices for individual patients. This guide contains a listing of those dimensional attributes that are directly related to the clinical utility and performance of these devices, along with recommendations for consistent methods of measuring these attributes and presenting the information for use in clinical decision making. This guide can be used by the manufacturers and researchers of stents to provide consistency of measurement and labeling of these dimensional characteristics. It may have use in the regulation of these devices by appropriate authorities.4.2 The dimensional attributes included in this guide are those that are deemed related to or possibly predictive of successful clinical performance of the stent based on prior clinical experience; however, because of the myriad patient and medical factors that influence the clinical outcome of any individual treatment, conformance of a stent and delivery system with the recommendations in this guide should not be interpreted as a guarantee of clinical success in any individual patient or group of patients.1.1 This guide covers the identification of and recommended measurement methods for those dimensional attributes of vascular stents that are deemed relevant to successful clinical performance. The delivery system packaged with and labeled specifically for use during the placement of the stent is also included within the scope of this guide.1.2 This guide addresses only the dimensional characteristics of stents. Material property and stent functional characteristics are not addressed herein. All dimensional characteristics described in this guide refer to in vitro (“bench-top”) characterization. Because of variable patient factors, for example, vessel compliance, the actual in vivo characteristics may be slightly different.1.3 This guide includes recommendations generally applicable to balloon-expandable and self-expanding stents fabricated from metals and metal alloys. It does not specifically address any attributes unique to coated stents or polymeric or biodegradable stents, although the application of this guide to those products is not precluded.1.4 While they are not specifically included within the scope of this guide, stents indicated for placement in nonvascular locations, such as the esophagus or bile duct, also might be characterized by the methods contained herein. Likewise, this guide does not include recommendations for endovascular grafts (“stent-grafts”) or other conduit devices commonly used to treat aneurysmal disease or peripheral vessel trauma or to provide vascular access, although some information included herein may be applicable to those devices.1.5 This guide does not include recommendations for balloon catheters sold as stand-alone angioplasty catheters, even though some of those catheters may be used for the delivery of unmounted stents supplied without a delivery system. Requirements for angioplasty catheters are contained in standards ISO 10555-1 and ISO 10555-4.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6.1 The units of measurements used throughout this guide reflect the hybrid system in common clinical use in the United States as of the time of the original approval of this guide. Since a primary purpose of this guide is to promote uniformity of labeling to facilitate the selection of devices by clinical users, the units most preferred by users were selected for this guide. Where those units are not SI units, or derivatives thereof, SI units are provided in parentheses.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Information technology - Open Systems Interconnection - Connection-oriented presentation protocol: Protocol specification AMENDMENT 1: Efficiency enhancements

定价: 182元 / 折扣价: 155

在线阅读 收 藏

Information technology - Open Systems Interconnection - Connection-oriented presentation protocol: Protocol specification AMENDMENT 2: Nested connections functional unit

定价: 182元 / 折扣价: 155

在线阅读 收 藏

5.1 Significance: 5.1.1 The application of elements (see 3.1.1 and Terminology E833) to the description and the summary and analysis of building construction cost provides a consistency, commonality, and utility through all stages of design that other forms of estimate presentation do not.5.1.2 This practice describes a simple format for elemental cost analysis presentation that is both valuable and informative when used during the various design stages of construction development.5.2 Use—Users include owners, developers, contractors, cost professionals, estimators, architects, engineers, quantity surveyors, facility managers, and others involved in property development, construction, maintenance, and management.5.2.1 Reporting—Cost reports structured by elements provide estimates, summaries, and analyses by applying “Cost to Function.” This application works whether the approach is “Design to Cost” or “Cost to Design.” Value analysis is greatly assisted through the allocation of estimated cost to elements.5.2.2 Controlling—Comparison of progressively more detailed estimates is simplified where cost is allocated to appropriate elements regardless of design or specification, permitting efficient review and checking of new estimates. Design estimating using elements allows for benchmarking and the setting of cost limits (baseline) for a building design from the outset, and also permits the establishment of an elemental cost plan (see 3.2.1). Baseline records and cost plans are accessed and compared with current reports.5.2.3 Recording—Historic and baseline cost records are easily kept for all forms of building construction, and in a format that can be used for the planning and design of future projects.5.2.4 Other Uses—Elemental summaries and analyses are equally useful in forensic estimating and in quantitative risk analysis.5.2.5 Relationship to “Trade” Estimating—Traditional trade (or construction) estimating summarizes cost to a product, or trade classification. This is valuable when construction work has been fully specified or contracted, but is less so through the planning and design stages. The two systems (trade and elemental) are compatible in that they both relate to the same end product, for example, a building; they differ solely in the way cost is aggregated. Each estimate form can be converted to the other by coding or allocating each construction component to an appropriate trade/product division or element. During design evolution, changes in design and specification can make trade estimates difficult to compare with previous or other, or both, estimates and so can hinder the process of cost control during the design phase.5.2.6 Additional Narrative Information—While costs presented in these formats are descriptive in themselves they do not tell the full story of a project’s design. Narrative description of the construction work should also be an integral part of any complete presentation. Reference and description of this narrative form can be found in Practice E1804, and in Classification E1557 Appendix X3—Preliminary Project Description (PPD).5.3 A detailed description of the presentation formats now follows. These descriptions are provided in eight sections, each intended to aid understanding of a particular facet of the formats:Appearance Section 6Element Inclusions and Exclusions Section 7Basic Rules Section 8Layout Section 9Numeric Precision Section 10Estimate Calculation Section 11Analysis Calculation Section 12Variations and Additions Section 131.1 This practice covers the concurrent use of relevant ASTM standards for the preparation of elemental cost estimates, summaries, and analyses and specifically their presentation in a concise, consistent, and logical manner.1.2 While the style and directions use construction terms applied to buildings, the principles apply equally well to other forms of construction where appropriate elemental classifications exist.1.3 This practice is not an estimating manual, nor is it a guide to the skills and knowledge required of an estimator or other cost professional.NOTE 1: The skills and knowledge acquired by a trained and experienced estimator are essential to the successful application of any elemental presentation format. They are the foundation of any estimate and the underpinning knowledge required when applying the elemental technique.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1. Scope This International Standard gives guidance for the content and presentation of operator's manuals for tractors, machinery for agriculture and forestry, and powered lawn and garden equipment. It is intended to assist manufacturers of tractors,

定价: 683元 / 折扣价: 581

在线阅读 收 藏

This practice elaborates on the different types, definition of basic operational terms, conventions, referencing procedures and substances, and terms and recommended means for signal-to-noise ratio determination and data presentation in the area of high-resolution nuclear magnetic resonance (NMR) spectroscopy. Some of the basic definitions apply to wide-line NMR or to NMR of metals, but this practice is generally not intended to cover these latter areas of NMR. Also, this version does not include definitions pertaining to double resonance, nor to rotating frame experiments.1.1 This standard contains definitions of basic terms, conventions, and recommended practices for data presentation in the area of high-resolution resolution nuclear magnetic resonance (NMR) spectroscopy. Some of the basic definitions apply to wide-line NMR or to NMR of metals, but in general it is not intended to cover these latter areas of NMR in this standard. This version does not include definitions pertaining to double resonance nor to rotating frame experiments.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Determining the potentiometric surface of an area is essential for the preliminary planning of any type of construction, land use, environmental investigations, or remediation projects that may influence an aquifer.5.1.1 The potentiometric surface in the proposed impacted aquifer must be known to properly plan for the construction of a water withdrawal or recharge facility, for example, a well. The method of construction of structures, such as buildings, can be controlled by the depth of the groundwater near the project. Other projects built below land surface, such as mines and tunnels, are influenced by the hydraulic head.5.2 Monitoring the trend of the groundwater table in an aquifer over a period of time, whether for days or decades, is essential for any permanently constructed facility that directly influences the aquifer, for example, a waste disposal site or a production well.5.2.1 Long-term monitoring helps interpret the direction and rate of movement of water and other fluids from recharge wells and pits or waste disposal sites. Monitoring also assists in determining the effects of withdrawals on the stored quantity of water in the aquifer, the trend of the water table throughout the aquifer, and the amount of natural recharge to the aquifer.5.3 This guide describes the basic tabular and graphic methods of presenting groundwater levels for a single groundwater site and several sites over the area of a project. These methods were developed by hydrologists to assist in the interpretation of hydraulic-head data.5.3.1 The tabular methods help in the comparison of raw data and modified numbers.5.3.2 The graphical methods visually display seasonal trends controlled by precipitation, trends related to artificial withdrawals from or recharge to the aquifer, interrelationship of withdrawal and recharge sites, rate and direction of water movement in the aquifer, and other events influencing the aquifer.5.4 Presentation techniques resulting from extensive computational methods, specifically the mathematical models and the determination of aquifer characteristics, are contained in the ASTM standards listed in Section 2.1.1 This guide covers and summarizes methods for the presentation of water-level data from groundwater sites.1.2 The study of the water table in aquifers helps in the interpretation of the amount of water available for withdrawal, aquifer tests, movement of water through the aquifers, and the effects of natural and human-induced forces on the aquifers.1.3 A single water level measured at a groundwater site gives the height of water at one vertical position in a well or borehole at a finite instant in time. This is information that can be used for preliminary planning in the construction of a well or other facilities, such as disposal pits. Hydraulic head can also be measured within a short time from a series of points, depths, or elevation at a common (single) horizontal location, for example, a specially constructed multi-level test well, indicates whether the vertical hydraulic gradient may be upward or downward within or between the aquifer.NOTE 1: The phrases “short time period” and “finite instant in time” are used throughout this guide to describe the interval for measuring several project-related groundwater levels. Often the water levels of groundwater sites in an area of study do not change significantly in a short time, for example, a day or even a week. Unless continuous recorders are used to document water levels at every groundwater site of the project, the measurement at each site, for example, use of a steel tape, will be at a slightly different time (unless a large staff is available for a coordinated measurement). The judgment of what is a critical time period must be made by a project investigator who is familiar with the hydrology of the area.1.4 Where hydraulic heads are measured in a short period of time, for example, a day, from each of several horizontal locations within a specified depth range, or hydrogeologic unit, or identified aquifer, a potentiometric surface can be drawn for that depth range, or unit, or aquifer. Water levels from different vertical sites at a single horizontal location may be averaged to a single value for the potentiometric surface when the vertical gradients are small compared to the horizontal gradients. The potentiometric surface assists in interpreting the gradient and horizontal direction of movement of water through the aquifer. Phenomena such as depressions or sinks caused by withdrawal of water from production areas and mounds caused by natural or artificial recharge are illustrated by these potentiometric maps.1.5 Essentially all water levels, whether in confined or unconfined aquifers, fluctuate over time in response to natural- and human-induced forces. The fluctuation of the water table at a groundwater site is caused by several phenomena. An example is recharge to the aquifer from precipitation. Changes in barometric pressure cause the water table to fluctuate because of the variation of air pressure on the groundwater surface, open bore hole, or confining sediment. Withdrawal of water from or artificial recharge to the aquifer should cause the water table to fluctuate in response. Events such as rising or falling levels of surface water bodies (nearby streams and lakes), evapotranspiration induced by phreatophytic consumption, ocean tides, moon tides, earthquakes, and explosions cause fluctuation. Heavy physical objects that compress the surrounding sediments, for example, a passing train or car or even the sudden load effect of the starting of a nearby pump, can cause a fluctuation of the water table (1).21.6 This guide covers several techniques developed to assist in interpreting the water table within aquifers. Tables and graphs are included.1.7 This guide includes methods to represent the water table at a single groundwater site for a finite or short period of time, a single site over an extended period, multiple sites for a finite or short period in time, and multiple sites over an extended period.1.8 This guide does not include methods of calculating or estimating water levels by using mathematical models or determining the aquifer characteristics from data collected during controlled aquifer tests. These methods are discussed in Guides D4043, D5447, and D5490, Test Methods D4044, D4050, D4104, D4105, D4106, D4630, D4631, D5269, D5270, D5472, and D5473.1.9 Many of the diagrams illustrated in this guide include notations to help the reader in understanding how these diagrams were constructed. These notations would not be required on a diagram designed for inclusion in a project document.1.10 This guide covers a series of options, but does not specify a course of action. It should not be used as the sole criterion or basis of comparison, and does not replace or relieve professional judgment.1.11 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.12 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Fatigue test results may be significantly influenced by the properties and history of the parent material, the operations performed during the preparation of the fatigue specimens, and the testing machine and test procedures used during the generation of the data. The presentation of fatigue test results should include citation of basic information on the material, specimens, and testing to increase the utility of the results and to reduce to a minimum the possibility of misinterpretation or improper application of those results.1.1 This practice covers the desirable and minimum information to be communicated between the originator and the user of data derived from constant-force amplitude axial, bending, or torsion fatigue tests of metallic materials tested in air and at room temperature.NOTE 1: Practice E466, although not directly referenced in the text, is considered important enough to be listed in this standard.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Implantable medical device labeling often results in a variety of label formats and information prioritization. This variability can be seen not only across different manufacturers but also across different implant types.3 At present label design and layout is developed by a given manufacturer and represents balancing internal needs (such as manufacturing, distribution, and marketing), regulatory requirements within various markets, and end user needs (as identified by individual manufacturers performing “voice of the consumer” feedback on their label designs).4.2 At no fault to any given manufacturer, this process, along with the manner in which label information competes for available “real estate” on a package, often leads to variable prioritization of label information and highly variable label designs. The impact of this variability on patient care is not well documented within the published literature. An article from AAOS Now in 2009 described potential issues around label variability and gave anecdotal evidence of its impact.34.3 No published literature demonstrating a clear and conclusive impact on patient safety resulting from implant label variability was identified. Despite this lack of evidence, anecdotal observations and input from various involved individuals and organizations (surgeons, operating room nurses, hospital administrators, product representatives, and manufacturers) suggests a potential, although unproven, benefit for an increased standardization of implant labeling.4.4 The authors of this guide believe it is important to highlight that no universally accepted method for validation of a label’s effectiveness exists. Current validation methods consist of varying methods of customer feedback on an existing label design using formal customer questionnaires, informal customer feedback through individual polling, and internal manufacturer-driven studies. The label recommendations presented within this guide have not been validated as more or less effective than other existing implant labels currently in use.4.5 These recommendations have been developed through the collaboration of an ASTM-sponsored task group with representation from large and small orthopedic implant manufacturers, orthopedic surgeons (specifically the Biomedical Engineering Committee from the American Academy of Orthopedic Surgeons), healthcare facility administrators, operating room nurses, the U.S. Food and Drug Administration (FDA), and the Canadian Healthcare System. The task group utilized “voice of consumer” feedback from previous manufacturer label initiatives combined with input from various end users on the task group. This process did not identify any given implant label format as being more or less effective but only attempts to prioritize information and recommend a universal format for this information. A manufacturer may determine that an alternative format may be more effective for its internal processes and elect not to follow these recommendations.1.1 The goal of this guide is to recommend a universal label format (across manufacturers and various implants) of content and relative location of information necessary for final implant selection within an implant’s overall package labeling.1.2 This guide recommends package labeling for musculoskeletal based implants individually processed and packaged with the intent of being opened at the point of use, typically in the operating room.1.3 This guide identifies the necessary, “high priority” label content and recommendations for the layout and location of information for accurate implant identification by the end users in the operating room environment.1.4 This goal is achieved by creating a partitioned, secondary area of an implant’s package label or a separate label to present this information uniformly.1.5 The authors of this guide identified the competing needs of regulatory requirements, manufacturing/distribution, and implant identification. It is recognized through our task group’s efforts that, if a manufacturer elects to implement these recommendations, balancing these competing needs may necessitate changing a manufacturer’s internal processes, relabeling their entire inventory (either at a single point in time or over a defined time period), or accepting duplicate information on an implant’s package label. No additional compromises that would allow the primary goal of uniform implant label design across manufacturers were identified.1.6 It is not the intent of this guide to limit or dictate overall package labeling content.1.7 It is not the intent of this guide to supplant existing regulatory requirements (only to augment or complement existing regulatory label requirements).1.8 The use or application of multiple languages is not prevented by this guide; however, use of more than one language is discouraged on the implant selection sublabel (ISSL) defined in this guide. The language of choice is left to the manufacturer and should be dictated by the end user and regulatory requirements in the jurisdictions where the device is marketed. International symbols should also be considered to avoid the need for multiple ISSLs where possible.1.9 Use and implementation of this guide is optional and at the sole discretion of the implant’s manufacturer. It shall be implemented with the following considerations:1.9.1 The content and layout of any orthopedic implant label should be influenced by risk management activities and all label formats should be validated.1.9.2 If internal risk management activities recommend deviation from this guide, the manufacturer is discouraged from implementing a hybrid label that partially applies the principles and recommendations in this guide.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
13 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页