微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
B140.9.2-10 Portable, pressurized-type, liquid-petroleum-fuelled camp stoves 现行 发布日期 :  1970-01-01 实施日期 : 

定价: 546元 / 折扣价: 465

在线阅读 收 藏

This PDF includes General Instruction No. 5.

定价: 455元 / 折扣价: 387

在线阅读 收 藏

Many important properties of crosslinked ethylene plastics vary with the gel content. Hence, determination of the gel content provides a means of both controlling the process and rating the quality of finished products.Extraction tests permit verification of the desired gel content of any given crosslinked ethylene plastic and they also permit comparison between different crosslinked ethylene plastics, including those containing fillers, provided that, for the latter, the following conditions are met: The filler is not soluble in xylene or toluene at the extraction temperature and the amount of filler present in the compound is known or can be determined.Sufficient crosslinking has been achieved to prevent migration of filler during the extraction. Usually it has been found that, at extraction levels up to 50 %, the extraction solvent remains clear and free of filler.Since some oxidative degradation of the material can occur at the extraction temperatures used in this procedure, despite the use of a closed cell which allows for minimal introduction of oxygen, a suitable antioxidant is added to the solvent to inhibit such degradation.Before proceeding with this method, reference should be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the materials specification shall take precedence over those mentioned in this test method. If there are no material specifications, then the default conditions apply1.1 The gel content of crosslinked ethylene plastics is determined by solvent extraction with xylene or toluene. This test method is applicable to ethylene plastics of all densities, including those containing fillers; provided the fillers are insoluble in the extraction solvent(s).1.2 This test method uses pressurized liquid extraction (PLE) to increase the speed and reduce the amount of solvent required for solvent extraction. The results of this method are similar to Test Method D2765.1.3 Extraction tests shall be performed on samples of any shape (see 7.2). Specimens shall be selected from those portions of the article most susceptible to insufficient crosslinking or selected from portions representative of the entire article. This test method has been developed for production and quality control of crosslinked polyethylene pipe but may be applicable to other products such as multilayer materials and fibers.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This method makes use of minimal reagents and allows for solvent recovery and re-use. Due to the use of minimal reagents, health and safety concerns are minimized in comparison to other methods.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Specific precautionary statements are given in Section 10.Note 1—There is no known ISO equivalent to this test method. This test method is similar to Test Method D2765.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 546元 / 折扣价: 465

在线阅读 收 藏

5.1 This test method evaluates the relative sensitivity of materials to mechanical impact in ambient pressure liquid oxygen, pressurized liquid oxygen, and pressurized gaseous oxygen.5.2 Any change or variation in test sample configuration, thickness, preparation, or cleanliness may cause a significant change in impact sensitivity/reaction threshold.5.3 Suggested criteria for discontinuing the tests are: (1) occurrence of two reactions in a maximum of 60 samples or less tested at the maximum energy level of 98 J (72 ft•lbf) or one reaction in a maximum of 20 samples tested at any other energy level for a material that fails; (2) no reactions for 20 samples tested at the 98-J (72-ft•lbf) energy level; or (3) a maximum of one reaction in 60 samples tested at the maximum energy level.1.1 This test method2 describes test equipment and techniques to determine the impact sensitivity of materials in oxygen under two different conditions: (1) in ambient pressure liquid oxygen (LOX) or (2) under pressure-controlled conditions in LOX or gaseous oxygen (GOX). It is applicable to materials for use in LOX or GOX systems at pressures from ambient to 68.9 MPa (0 to 10 000 psig). The test method described herein addresses testing with pure oxygen environments; however, other oxygen-enriched fluids may be substituted throughout this document.1.2 This test method provides a means for ranking nonmetallic materials as defined in Guide G63 for use in liquid and gaseous oxygen systems and may not be directly applicable to the determination of the sensitivity of the materials in an end-use configuration. This test method may be used to provide batch-to batch acceptance data. This test method may provide a means for evaluating metallic materials in oxygen-enriched atmospheres also; however, Guide G94 should be consulted for preferred testing methods.1.3 Values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See also Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1011元 / 折扣价: 860 加购物车

在线阅读 收 藏

定价: 455元 / 折扣价: 387

在线阅读 收 藏

5.1 This is a performance-based method, and modifications are allowed to improve performance.5.1.1 Due to the rapid development of newer instrumentation and column chemistries, changes to the analysis described in this test method are allowed as long as better or equivalent performance data result. Any modifications shall be documented and performance data generated. The user of the data generated by this test method shall be made aware of these changes and given the performance data demonstrating better or equivalent performance.5.2 The first reported synthesis of BPA was by the reaction of phenol with acetone by Zincke.7 BPA has become an important high-volume industrial chemical used in the manufacture of polycarbonate plastic and epoxy resins. Polycarbonate plastic and resins are used in numerous products, including electrical and electronic equipment, automobiles, sports and safety equipment, reusable food and drink containers, electrical laminates for printed circuit boards, composites, paints, adhesives, dental sealants, protective coatings, and many other products.85.3 The environmental source of BPA is predominantly from the decomposition of polycarbonate plastics and resins. BPA is not classified as bio-accumulative by the U.S. Environmental Protection Agency and will biodegrade. BPA has been reported to have adverse effects in aquatic organisms and may be released into environmental waters directly at trace levels through landfill leachate and sewage treatment plant effluents. This method has been investigated for use with soil, sludge, and biosolids.5.4 The land application of biosolids has raised concerns over the fate of BPA in the environment, and a standard method is needed to monitor concentrations. This method has been investigated for use with various soils.1.1 This procedure covers the determination of Bisphenol A (BPA) in soil, sludge, and biosolids. This test method is based upon solvent extraction of a soil matrix by pressurized fluid extraction (PFE). The extract is filtered and analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). BPA is qualitatively and quantitatively determined by this test method.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The method detection limit (MDL),2 electrospray ionization (ESI) mode, and reporting range3 for BPA are listed in Table 1.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Brown and Lu4,5 show the Charpy impact energy is related to the ultimate critical temperature of the rapid crack propagation [RCP] behavior as measured by the ISO 13477, S-4 test.65.2 The test method may be used to determine the impact energy of polyethylene used in the manufacture of pipe . This test method involves the preparation of a small compression molded specimen of PE resin that is then notched in a specified manner. The specimen is then broken in a pendulum impact machine. The impact energy is recorded in joules. The value obtained is referred to as the Charpy impact energy.1.1 This test method describes the specimen preparation and the method of measuring the impact energy of polyethylene used in pressurized pipes.1.2 The test specimens are taken from compression molded plaques of the resin from pellets or pipe.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This is a performance-based method, and modifications are allowed to improve performance.5.1.1 Due to the rapid development of newer instrumentation and column chemistries, changes to the analysis described in this standard are allowed as long as better or equivalent performance data result. Any modifications shall be documented and performance data generated. The user of the data generated by this standard shall be made aware of these changes and given the performance data demonstrating better or equivalent performance.5.2 Organophosphate pesticides affect the nervous system by disrupting the enzyme that regulates acetylcholine, a neurotransmitter. They were developed during the early 19th century, but their effects on insects, which were similar to their effects on humans, were discovered in 1932. Some are poisonous and were used as chemical weapon agents. Organophosphate pesticides are usually not persistent in the environment.7,85.3 This test method is for the analysis of selected organophosphorous based pesticide degradation products.5.4 This method has been investigated for use with various soils.1.1 This procedure covers the determination of Diisopropyl Methylphosphonate (DIMP), Ethyl Methylphosphonic Acid (EMPA), Isopropyl Methylphosphonic Acid (IMPA), Methylphosphonic Acid (MPA), and Pinacolyl Methylphosphonic Acid (PMPA), referred to collectively as organophosphonates (OPs) in this test method, in soil. This method is based upon solvent extraction of a soil by pressurized fluid extraction (PFE). The extract is filtered and analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). OPs are qualitatively and quantitatively determined by this method.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The method detection limit2 (MDL), electrospray ionization (ESI) mode, and reporting range3 for the OPs are listed in Table 1.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

5.1 This practice is designed to simulate the in-service oxidative aging that occurs in asphalt binders during pavement service. Residue from this conditioning practice may be used to estimate the physical or chemical properties of asphalt binders after several years of in-service aging in the field.5.2 Binders conditioned using this practice are normally used to determine specification properties in accordance with Specification D6373 or D8239, or AASHTO M 320.5.3 For asphalt binders of different grades or from different sources, there is no unique correlation between the time and temperature in this conditioning practice and in-service pavement age and temperature. Therefore, for a given set of in-service climatic conditions, it is not possible to select a single PAV conditioning time, temperature, and pressure that will predict the properties or the relative rankings of the properties of asphalt binders after a specific set of in-service exposure conditions.5.4 The relative degree of hardening of different asphalt binders varies with conditioning temperatures and pressures in the PAV. Therefore, two asphalt binders may age at a similar rate at one condition of temperature and pressure, but age differently at another condition. Hence, the relative rates of aging for a set of asphalts at PAV conditions may differ significantly from the actual in-service relative rates at lower pavement temperatures and ambient pressures.1.1 This practice covers the conditioning of asphalt binders to simulate accelerated aging (oxidation) by means of pressurized air and elevated temperature. This is intended to simulate the changes in rheology which occur in asphalt binders during in-service oxidative aging, but may not accurately simulate the relative rates of aging. It is normally intended for use with residue from Test Method D2872 (RTFOT), which is designed to simulate plant aging.NOTE 1: PAV conditioning has not been validated for materials containing particulate materials.1.2 The aging of asphalt binders during service is affected by ambient temperature and by mixture-associated variables, such as the volumetric proportions of the mix, the permeability of the mix, properties of the aggregates, and possibly other factors. This conditioning process is intended to provide an evaluation of the relative resistance of different asphalt binders to oxidative aging at selected elevated aging temperatures and pressures, but cannot account for mixture variables or provide the relative resistance to aging at in-service conditions.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standardNOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
18 条记录,每页 10 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页