微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

Information technology - Coding of audio-visual objects - Part 4: Conformance testing AMENDMENT 5: Conformance extensions for error-resilient simple scalable profile

定价: 182元 / 折扣价: 155

在线阅读 收 藏

4.1 The heat of hydration of a calcium aluminate-based castable is liberated over a short period of time (as compared to portland cement). This makes it easy to measure the heat profile using off-the-shelf thermocouple equipment.4.2 The heat profile can be used to make inferences about the setting and strength gain behavior of a castable and sometimes the working time of a castable.4.3 Factors that should be controlled when comparing two castables include: size, shape, and mass of cast object, start temperature of the mix, temperature of environment, and the thermal conductivity of the environment. If these factors are held constant, then the two castables’ heat profiles can be compared.4.4 The temperature increase created by the castable exothermic reaction shall be at least 2.0 °C more than the normal fluctuation of the laboratory temperature so that the time of this increase is easily discernible to the user.4.5 Varying the amount of cement in the castable, the amount of water, the type and quantity of admixtures, and so forth, will change the shape, maximum temperature, and time to maximum temperature of the curve.4.6 Following is an example of a curve generated for an LCC (see Fig. 1) that does exhibit two peaks, the first one marking the end of working time. In this curve, one could also infer that the start temperature of the mix was 24 °C and also that the hydraulic strength gain reaction was significantly started, but not completed by 6 h.FIG. 1 Example of LCC Exo Profile1.1 This guide applies to all castables with a reactive binder system that produces a measurable heat profile during the setting and hardening process. The majority of these systems will have calcium aluminate cement as one component of the binder system.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The height of surface profile has been shown to be a factor in the performance of various coatings applied to steel. For this reason, surface profile should be measured prior to coating application to ensure conformance of a prepared surface to profile requirements specified by the manufacturer of a protective coating or the coating job specification.NOTE 2: The peak count/peak density has been shown to be a factor in the performance of various coatings applied to steel. According to research performed by Roper, Weaver and Brandon6, an increase in peak count can improve the adhesion of some coatings to the prepared steel, as well as provide greater resistance to corrosion undercutting once the coating becomes damaged in service.NOTE 3: Optical microscope methods serve as a referee method for surface profile measurement methods A and B. Profile depth designations are based on the concept of mean maximum profile (h max); this value is determined by averaging a given number (usually 20) of the highest peak to lowest valley measurements made in the field of view of a standard measuring microscope. This is done because of evidence that coating performance in any one small area is primarily influenced by the highest surface features in that area and not by the average roughness.71.1 These test methods cover the description of techniques for measuring the profile of abrasive blast cleaned surfaces in the field, shop, and laboratory. There are other techniques suitable for laboratory use not covered by these test methods.1.2 Method B may also be appropriate to the measurement of profile produced by using power tools.NOTE 1: The Method B procedure in this standard was developed for use on flat surfaces. Depending on the radius of the surface, the results could have greater variability with lower values and averages.1.3 SSPC standard SSPC-PA 17 provides additional guidance for determining conformance with surface profile requirements.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Information technology - Coding of audio-visual objects - Part 5: Reference software AMENDMENT 5: Reference software extensions for error resilient simple scalable profile

定价: 319元 / 折扣价: 272

在线阅读 收 藏
ASTM E2560-23 Standard Specification for Data Format for Pavement Profile Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This specification describes a data file format for pavement profile.1.2 This specification describes the variables and sizes of all data that will be stored in the file. The file is in binary format and is fully documented in this specification.1.3 This specification is designed to be independent of hardware platforms, computer languages, and operating systems (OS).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice is used for reporting the experimental conditions as specified in Section 6 in the “Methods” or “Experimental” sections of other publications (subject to editorial restrictions).5.2 The report would include specific conditions for each data set, particularly, if any parameters are changed for different sputter depth profile data sets in a publication. For example, footnotes of tables or figure captions would be used to specify differing conditions.1.1 This practice covers the information needed to describe and report instrumentation, specimen parameters, experimental conditions, and data reduction procedures. SIMS sputter depth profiles can be obtained using a wide variety of primary beam excitation conditions, mass analysis, data acquisition, and processing techniques (1-4).21.2 Limitations—This practice is limited to conventional sputter depth profiles in which information is averaged over the analyzed area in the plane of the specimen. Ion microprobe or microscope techniques permitting lateral spatial resolution of secondary ions within the analyzed area, for example, image depth profiling, are excluded.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

9.1 The requirements of this specification are intended to provide extruded PVC profile strip suitable for the field fabrication of spirally wound liner pipe for the rehabilitation of existing pipelines and conduits conveying sewage, process flow, and storm water under gravity flowconditions.NOTE 3: Industrial waste disposal lines should be installed only with the specific approval of the cognizant code authority since chemicals not commonly found in drains and sewers and temperatures in excess of 140°F (60°C) may be encountered.AbstractThis specification covers the requirements and test methods for materials, dimensions, workmanship, stiffness factor, extrusion quality, and test procedures for extruded poly(vinyl chloride) (PVC) profile strips used for machine-made field fabrication of spirally wound pipe liners in the rehabilitation of a variety of existing pipelines and conduits including sanitary sewers, storm water sewers, process flow piping, and non-circular pipelines (such as arched or oval shapes and rectangular shapes) under gravity flow conditions. Certification, packaging, and product marking for quality assurance are also considered.1.1 This specification covers requirements and test methods for materials, dimensions, workmanship, stiffness factor, extrusion quality, and a form of marking for extruded poly(vinyl chloride) (PVC) profile strips used for machine made field fabrication of spirally wound pipe liners in the rehabilitation of a variety of gravity applications such as sanitary sewers, storm sewers, and process piping in diameters of 6 to 180 in. and for similar sizes of non-circular pipelines such as arched or oval shapes and rectangular shapes.1.2 Profile strip produced to this specification is for use in field fabrication of spirally wound liner pipes in nonpressure sewer and conduit rehabilitation, where the spirally wound liner pipe is expanded until it presses against the interior surface of the existing sewer or conduit, or, alternatively, where the spirally wound liner pipe is inserted as a fixed diameter into the existing sewer or conduit and the annular space between the liner pipe and the existing sewer or conduit is grouted.1.3 This specification includes extruded profile strips made only from materials specified in 5.1.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 The following precautionary caveat pertains only to the test method portion, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations involved in the rehabilitation of non-pressure sewers and conduits. As for any practice, modifications may be required for specific job conditions.1.1 This practice describes the procedures for the rehabilitation of sewer lines and conduits by the installation of a field-fabricated PVC liner. After installation of the liner, cementitious grout is injected into the annular space between the liner and the existing sewer or conduit. The rehabilitation of the host structure by this installation practice results in a rigid composite structure (PVC/grout/existing pipe). This rehabilitation process may be used in a variety of gravity applications, such as sanitary sewers, storm sewers and process piping of man-entry sizes (36 to 144 in. in vertical dimension). The profile strips used for field fabrication of PVC liners are supplied in coils for spiral winding of the liner or in custom-cut flat panels for circumferential lining of all or any portion of the circumference of the host conduit (see Figs. 1 and 2).FIG. 1 Example of Profile PVC StripFIG. 2 Typical Installations with Panels1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Particular attention is drawn to those safety regulations and requirements involving entering into and working in confined spaces.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice provides a means for obtaining a quantitative estimate of a pavement property defined as ride quality or rideability using longitudinal profile measuring equipment.5.1.1 The Ride Number (RN) is portable because it can be obtained from longitudinal profiles obtained with a variety of instruments.5.1.2 The RN is stable with time because true RN is based on the concept of a true longitudinal profile, rather than the physical properties of particular type of instrument.5.2 Ride quality information is a useful input to the pavement manage systems (PMS) maintained by transportation agencies.5.2.1 The subjective ride quality estimate produced by this practice has been determined (6) to be highly correlated (r = 0.92) with measured subjective ride quality and to produce a low standard estimate of error (0.29 RN units) for the ride quality estimate.5.2.2 The subjective ride quality estimates produced by this practice were found to be not significantly different with respect to pavement type, road class, vehicle size, vehicle speed (within posted speed limits), and regionality over the range of variables included in the experiment (1-4).5.2.3 The subjective ride quality estimates produced by this practice have been found to be good predictors of the need of non-routine road maintenance for the various road classifications (3).5.3 The use of this practice to produce subjective ride quality estimates from measured longitudinal profile eliminates the need for expensive ride panel studies to obtain the same ride quality information.1.1 This practice covers the mathematical processing of longitudinal profile measurements to produce an estimate of subjective ride quality, termed Ride Number (RN).1.2 The intent of this practice is to provide the highway community a standard practice for the computing and reporting of an estimate of subjective ride quality for highway pavements.1.3 This practice is based on an algorithm developed in National Cooperative Highway Research Project (NCHRP) 1–23 (1, 2),2 two Ohio Department of Transportation ride quality research projects (3, 4), and work presented in Refs (5, 6).1.4 The computed estimate of subjective ride quality produced by this practice was named Ride Number (RN) in NCHRP Research Project 1–23 (1, 2) to differentiate it from other measures of ride quality computed from longitudinal profile. Eq 1 of 8.2 represents the mathematical definition of Ride Number.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification establishes requirements for the material properties, including dimensional stability, weatherability, and extrusion quality, of rigid poly(vinyl chloride) (PVC) exterior profile extrusions used for assembled windows and doors. Methods for testing and for identifying exterior profile extrusions that comply with this specification are also provided. The physical and performance requirements of PVC are presented in details. The dimensional stability and impact strength shall be tested to meet the requirements prescribed.1.1 This specification establishes requirements for the material properties, including dimensional stability, weatherability, and extrusion quality, of rigid poly(vinyl chloride) (PVC) exterior profile extrusions used for assembled windows and doors. Methods for testing and for identifying exterior profile extrusions that comply with this specification are also provided.1.2 The use of rigid PVC recycled plastic in this product shall be in accordance with the requirements in Section 6.NOTE 1: Information with regard to application, assembly, and installation should be obtained from the manufacturers of the profiles and of the windows and doors.NOTE 2: Refer to Specification D3678 for interior profile extrusions.1.3 Color-hold guidelines are provided in an appendix for the manufacturer’s product development and quality performance use.1.4 Color-hold guidelines are presently limited to white, grey, beige, light brown, and dark brown (see Figs. X1.1 through X1.5). Additional colors will be added as color guidelines are developed.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are for information only.NOTE 3: There is no known ISO equivalent to this standard.1.6 The text of this standard references notes and footnotes, which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.7 The following safety hazards caveat pertains only to the test methods portion, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This test method covers the determination of the char density profile of a charred ablator. The total thickness of the char and degradation zone must be larger than the machining thicknesses required. Density variation throughout a charred ablator material is determined by successively measuring, machining, and weighing a sample of known size to obtain the density of the material removed by machining. The apparatus required for this method includes a laboratory balance capable of measuring to the nearest ten thousandth gram, and a machining technique capable of removing material in increments as small as a thousandth mm.1.1 This test method covers the determination of the char density profile of a charred ablator that can be used with the following limitations:1.1.1 The local surface imperfections must be removed, and the char must be able to be machined off in a plane parallel to the char-virgin material interface before the density profiles can be determined.1.1.2 The char must be strong enough to withstand the machining and handling techniques employed.1.1.3 The material should have orderly density variations. The total thickness of the char and degradation zone must be larger than the machining thicknesses required.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—Certain inch-pound equivalent units are included in parentheses for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This practice is applicable to the processing of road surface profiles for the purpose of computing a single numerical index related to the roughness of a profile.1.2 A data record of the surface profile, measured according to an applicable test method, is assumed. The data record may be a representation of either elevation, slope, or acceleration.1.3 Procedures are defined for computing the index over the length of the profile record, or over specified sub-sections of the record.1.4 This practice covers only the computation procedures and does not specify or define the form of the profile index weighting function except in the requirement that the index be expressed in the form of either a "mean square" or "root mean square" measure of the surface profile. The numerical value of the computed index will depend on the weighting and window functions used. The weighting function used can incorporate any linear mathematical operation, such as multiplication by a constant, differentiation, or integration. Measures obtained using nonlinear operations, such as rectification, are not covered.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the requirements and test methods for materials, dimensions, workmanship, extrusion quality, and form of marking for extruded poly(vinyl chloride) (PVC) profile strips used for field fabrication of PVC liners for existing man-entry sewer and conduit rehabilitation. The strips shall be subjected to acetone immersion, elasticity, and hydrostatic pressure tests in the standard laboratory atmosphere under specific temperature and relative humidity conditions to determine conformance to extrusion quality, flexural rigidity, and joint leakage requirements, respectively. The extruded profile strips shall be homogeneous throughout and free from visible cracks, holes, foreign inclusions, or other injurious defects and shall be as uniform as commercially practical in color, opacity, density, and other physical properties.1.1 This specification covers requirements and test methods for materials, dimensions, workmanship, extrusion quality, and a form of marking for extruded poly (vinyl chloride) (PVC) profile strips used for field fabrication of PVC liners for existing man-entry (36 in. to 144 in. (900 mm to 3650 mm) in vertical dimension) sewer and conduit rehabilitation.1.2 Profile strip produced to this specification is for use in field fabrication of PVC liners in non-pressure pipe and conduit rehabilitation where the liner is installed into the existing sewer or conduit and the annular space between the liner and the existing sewer or conduit is grouted with cementitious grout.NOTE 1: The practice for the installation of PVC liner covered by this specification is Practice F1698.1.3 This specification includes extruded profile strips made only from materials specified in 6.1.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers requirements and test methods for annular, corrugated profile wall polyethylene pipe and fittings with an interior liner. The pipe and blow-molded fittings shall be made of virgin PE plastic compound having a cell classification 435400C or 435400 and its carbon black content shall not exceed 4 %. Compounds used in the manufacture of rotationally molded fittings and couplings shall be virgin PE having a cell classification of 213320C or 213320E and its carbon black content shall not exceed 4%. On the other hand, compounds used in the manufacture of injection molded fittings and couplings shall be made of virgin PE plastic compound having a cell classification 414420C or 414420E and its carbon black content shall not exceed 4 %. Different tests and measurements shall be performed in order to determine the following properties of pipes: inside diameter, length, minimum inner-liner thickness, perforations, stiffness, flattening, and impact resistance. The pipe and fittings shall be homogeneous throughout and be as uniform as commercially practical in color, opacity, and density. The pipe walls shall be free of cracks, holes, blisters, voids, foreign inclusions, or other defects that are visible to the naked eye and that may affect the wall integrity. The ends shall be cut cleanly and squarely. Holes intentionally placed in perforated pipe are acceptable.1.1 This specification covers requirements and test methods for annular, corrugated profile wall polyethylene pipe and fittings with an interior liner. The nominal inside diameters covered are 300 mm to 1500 mm [12 in. to 60 in.].1.2 The requirements of this specification are intended to provide pipe and fittings for underground use for non-pressure gravity-flow storm sewer and subsurface drainage systems.NOTE 1: Pipe and fittings produced in accordance with this specification shall be installed in compliance with Practice D2321.1.3 This specification covers pipe and fittings with an interior liner using a corrugated exterior profile (Fig. 1).FIG. 1 Typical Annular Corrugated Pipe Profile1.4 The products manufactured under this standard use either virgin or recycled (post-industrial or post-consumer) materials in accordance with the requirements specified for each.1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 The following precautionary caveat pertains only to the test method portion, Section 7, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers requirements for pipe stiffness poly(vinyl chloride) (PVC) closed profile sewer pipe and fittings with integral bell and elastomeric seal joints or plain end pipe with couplings in sizes based on a controlled inside diameter. The requirements of this specification are intended to provide pipe and fittings suitable for nonpressure drainage of sewage and surface water. The following tests shall be performed: referee testing; quality control testing; dimensions; flattening; impact resistance; pipe stiffness; acetone immersion; and air test.1.1 This specification covers requirements for 10 psi pipe stiffness poly(vinyl chloride) (PVC) closed profile sewer pipe and fittings with integral bell and elastomeric seal joints or plain end pipe with couplings in sizes (18 to 60 in.) based on a controlled inside diameter.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 The following safety hazard caveat pertains only to the test methods portion, Section , of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1—Pipe and fittings produced to this specification should be installed in accordance with Practice D 2321.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
41 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页