微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

5.1 The bulk density is an indicator of calcined petroleum coke porosity and packing capability which is an important coke property for anode production in aluminum industry. This procedure will allow an automated measurement of specific sized fractions ranging from 8 mm to 0.25 mm coke particles.5.2 Results from this test method are used in determining coke specifications, classification purposes, and for quality control.1.1 The test method covers the determination of bulk density for a specific size fraction of calcined petroleum coke using an automated pycnometer that compacts coke by applying transaxial pressure under a controlled force.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The true specific gravity of a material is the ratio of its true density, determined at a specific temperature, to the true density of water, determined at a specific temperature. Thus, the true specific gravity of a material is a primary property which is related to chemical and mineralogical composition.4.2 This test method is particularly useful for hydratable materials that are not suitable for test with Test Method C135.4.3 For refractory raw materials and products, the true specific gravity is a useful value for: classification, detecting differences in chemical composition between supposedly like samples, indicating mineralogical phases or phase changes, calculating total porosity when the bulk density is known, and for any other test method that requires this value for the calculation of results.4.4 This test method is a primary standard method which is suitable for use in specifications, quality control, and research and development. It can also serve as a referee test method in purchasing contracts or agreements.4.5 Fundamental assumptions inherent in this test method are the following:4.5.1 The sample is representative of the material in general,4.5.2 The total sample has been reduced to the particle size specified,4.5.3 No contamination has been introduced during processing of the sample,4.5.4 The ignition of the sample has eliminated all free or combined water without inducing sintering or alteration,4.5.5 An inert gas (helium) has been used in the test, and4.5.6 The test method has been conducted in a meticulous manner.4.5.7 Deviation from any of these assumptions negates the usefulness of the results.4.6 In interpreting the results of this test method, it must be recognized that the specified sample particle size is significantly finer than specified for Test Method C135. Even this finer particle size for the sample does not preclude the presence of some closed pores, and the amount of residual closed pores may vary between materials or even between samples of the same or like materials. The values generated by this test method may, therefore, be very close approximations rather than accurate representations of true specific gravities. Thus, comparisons of results should only be judiciously made between like materials tested by this test method or with full recognition of potentially inherent differences between the materials being compared or the test method used.1.1 This test method covers the determination of the true specific gravity of solid materials, and is particularly useful for materials that easily hydrate which are not suitable for test with Test Method C135. This test method may be used as an alternate for Test Methods C135, C128, and C188 for determining true specific gravity.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—In 7.3, the equivalent SI unit is expressed in parentheses.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property which can be used in conjunction with other properties to characterize pure hydrocarbons and their mixtures.5.2 This test method was originally developed for the determination of the density of the ASTM Knock Test Reference Fuels n-heptane and isooctane, with an accuracy of 0.00003 g/mL. Although it is no longer employed extensively for this purpose, this test method is useful whenever accurate densities of pure hydrocarbons or petroleum fractions with boiling points between 90 °C and 110 °C are required.1.1 This test method covers the measurement of the density of pure hydrocarbons or petroleum distillates boiling between 90 °C and 110 °C that can be handled in a normal fashion as a liquid at the specified test temperatures of 20 °C and 25 °C.1.2 This test method provides a calculation procedure for the conversion of density to relative density (specific gravity).1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 Cellular plastics are composed of the membranes or walls of polymer separating small cavities or cells. These cells may be interconnecting (open cell), non-connecting (closed cell), or any combination of these types. This test method determines numerical values for open cells. It is a porosity determination, measuring the accessible cellular volume of a material. The volume occupied by closed cells is considered to include cell walls. Since any conveniently sized specimen can only be obtained by some cutting operation, a fraction of the closed cells will be opened during sample preparation and will be included as open cells. 1.2 This test method consists of three procedures: 1.2.1 Procedure A , designed to correct for cells opened during sample preparation, by measuring cell diameter, calculating, and allowing for surface volume; 1.2.2 Procedure B , designed to correct for cells opened in sample preparation, by cutting and exposing new surface area equal to the surface area of the original sample dimension, and 1.2.3 Procedure C , which does not correct for cells opened during sample preparation and gives good accuracy on predominantly highly open-celled materials. The accuracy decreases as the closed cell content increases and as the cell size increases. 1.3 The values as stated in SI units are to be regarded as the standard. The values in parentheses are given for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Notes 2, 4, and 8. Note 1-This test method and ISO 4590-1981 use the same basic principles but are significantly different in experimental detail.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The specific gravity value is used in many phase relation equations to determine relative volumes of particle, water, and gas mixtures.5.2 The term soil particle typically refers to a naturally occurring mineral grain that is not readily soluble in water. Therefore, the specific gravity of soils that contain extraneous matter (such as cement, lime, and the like) or water-soluble material (such as salt) must be corrected for the precipitate that forms on the test specimen after drying. If the precipitate has a specific gravity less than the parent soil grains, the uncorrected test result will be too low. If the precipitate has a higher specific gravity, then the uncorrected test value will be too high.5.3 Heating during drying may diagenetically alter the structure of some clay minerals.3 Therefore caution should be exercised if the mineral composition of a clay test specimen is going to be determined after drying. It is possible to dry the test specimen at a lower temperature. However, the effect on water content4 and hence specific gravity should be investigated. In addition, some materials other than clay may be affected by drying at 110°C, such as gypsum, soils containing organics, fly ash containing residual coal, island sands. Test Method D2216 includes recommendations for drying gypsum using a lower temperature, such as 60°C.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the specific gravity of soil solids by means of a gas pycnometer. Particle size is limited by the dimensions of the test specimen container of the particular pycnometer being used.1.2 Test Method D854 may be used instead of or in conjunction with this test method for performing specific gravity tests on soils. Note that Test Method D854 does not require the specialized test apparatus needed by this test method. However, Test Method D854 may not be used if the test specimen contains matter that can readily dissolve in water, whereas this test method does not have that limitation.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 For purposes of comparing a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.3.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.1.4.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The converted slug unit is not given, unless dynamic (F = ma) calculations are involved.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method measures the volume of dry coating obtainable from a given volume of liquid coating. This value is useful for calculating the volatile organic content (VOC) of a coating and could be used to estimate the coverage (square feet of surface covered at a specified dry film thickness per unit volume) obtainable with different coating products.NOTE 1: In Practice D3960 paragraph 10.3.1, the equation for calculating the VOC content using the percent volume nonvolatile is given. Prior to this method a satisfactory procedure for measuring percent volume nonvolatile did not exist (see Note 11 in Practice D3960).NOTE 2: Since the actual coverage of a coating includes the void volume and the porosity of the film, the coverage value calculated from this method will be inaccurate by that amount, that is, the actual coverage will be greater. The higher the pigment to binder ratio (P/B) of a coating or the higher content of void containing material (latices, hollow beads, etc.) or both, the greater will be the deviation of the coverage calculation (This is also true to a lesser degree with Test Method D2697).4.2 For various reasons the volume nonvolatile value obtained for a coating is often not equal to that predicted from simple linear addition of the weights and volumes of the raw materials in a formulation. One reason is that the volume occupied by a solution of resin in solvent may be the same, greater, or less than the total volume of the separate ingredients. Such contraction or expansion of resin solutions is governed by a number of factors, one of which is the extent and direction of spread between solubility parameters of the resin and solvent.4.3 The spatial configuration of the pigment particles and the degree to which the pigment particles are filled with the binder also affect the volume of a dry coating film. Above the critical pigment volume concentration, the apparent volume of the dry film is significantly greater than theoretical due to the increase in unfilled voids between pigment particles. The use of volume nonvolatile matter values in such instances should be carefully considered as the increased volume is largely due to air trapped in these voids.4.4 For thin films, the issue of critical pigment volume effects is usually not a concern. With high poly(vinyl chloride) (PVC) films, however, liquid displacement of air voids takes place with difficulty even under high pressures. Helium solves this problem since, as a gas, it readily penetrates and displaces air, water, and volatile solvents even at low pressures. Purging the gas pycnometer flushes these materials from the film.1.1 This test method covers the determination of the percent volume nonvolatile matter of a variety of clear and pigmented coatings. The approach used should provide faster and more accurate results than the use of the liquid displacement technique in Test Method D2697, particularly for coatings that are difficult to wet or that contain voids, cracks or other defects. The improvement in accuracy stems from the superior ability of helium gas under pressure to penetrate very small pores and surface irregularities in dried films. This provides a more accurate determination of void volumes than can be obtained via liquid displacement.1.2 The technique will provide results under the following constraints:1.2.1 The stability of the helium gas pycnometer is greater than ±0.005 cm3.1.2.2 Test specimen weights are greater than 1 g.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The real density of calcined petroleum coke directly influences the physical and chemical properties of the manufactured carbon and graphite artifacts for which it is used. Density, therefore, is a major quality specification of calcined petroleum coke and is used as a control in coke calcination.1.1 This test method covers the determination of the real density (RD) of calcined petroleum coke. Real density, by definition is obtained when the particle size of the specimen is smaller than 75 µm (U.S. No. 200 Sieve).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and to assess the quality of crude oils.5.2 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperatures of 15 °C.5.3 The determination of densities at the elevated temperatures of 40 °C and 100 °C is particularly useful in providing the data needed for the conversion of kinematic viscosities in mm2/s (centistokes) to the corresponding dynamic viscosities in mPa·s (centipoises).1.1 This test method covers two procedures for the measurement of the density of materials which are fluid at the desired test temperature. Its application is restricted to liquids of vapor pressures below 80 kPa (600 mm Hg) and viscosities below 40 000 mm2/s (cSt) at the test temperature. The method is designed for use at any temperature between 20 °C and 100 °C. It can be used at higher temperatures; however, in this case the precision section does not apply.NOTE 1: For the determination of density of materials which are fluid at normal temperatures, see Test Method D1217.1.2 This test method provides a calculation procedure for converting density to specific gravity.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and to access the quality of crude oils.5.2 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperatures of 15 °C.5.3 The determination of densities at the elevated temperatures of 40 °C and 100 °C is particularly useful in providing the data needed for the conversion of kinematic viscosities in centistokes (mm2/s) to the corresponding dynamic viscosities in centipoises (mPa·s).1.1 This test method covers the determination of the density of oils more viscous than 15 mm2/s (cSt) at 20 °C, and of viscous oils and melted waxes at elevated temperatures, but not at temperatures at which the sample would have a vapor pressure of 13.3 kPa (100 mmHg) or above.NOTE 1: To determine the densities of less viscous liquids at 20 °C or 25 °C use Test Method D1217.1.2 This test method provides a calculation procedure for converting density to relative density (specific gravity).1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for details and EPA’s website—http://www.epa.gov/mercury/faq.htm—for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.1.4 The values stated in SI units are to be regarded as standard.1.4.1 Exception—Other units of measurement are included in this standard for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Values of density and relative density are used for converting volumes to units of mass as required in other ASTM standards and in sales transactions.1.1 This test method covers the determination of density and relative density by pycnometer, and can be used for pitch that can be handled in fragments.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is useful in characterizing pitches as one element in establishing uniformity of shipments and sources of supply. With this method, the density is determined to two decimal places, which is sufficient for most applications. If a more precise measurement is required (three decimal places), use Test Methods D2320 or D71.1.1 This test method covers the determination of pitch density by helium pycnometer. It is applicable at a range of room temperatures of 15 °C to 35 °C.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
16 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页