微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers blended uranium oxides with a 235U content of less than 5% for direct hydrogen reduction to nuclear grade uranium dioxide. For commercial-grade uranium oxide with an isotopic content of 235U between that of natural uranium and 5%, the isotopic limits shall apply. Physical and chemical requirements include: uranium content, oxygen-to-uranium ratio, impurity content, equivalent boron content, bulk density, moisture content, ability to flow, particle size, and reduction and sinterability. Maximum concentration limit is specified for impurity elements such as: aluminum, barium, beryllium, bismuth, calcium+magnesium, carbon, chlorine, chromium, cobalt, copper, fluorine, iron, lead, manganese, molybdenum, nickel, phosphorus, silicon, sodium, tantalum, thorium, tin, titanium, tungsten, vanadium, and zinc. The identity of a lot shall be retained throughout.1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %.1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source.1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of the obligation to conform to all international, national, state, and local regulations for processing, shipping, or any other way of using uranium oxide powders (see 2.2 and 2.3).1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 The following safety hazards caveat pertains only to the test methods portion of the annexes in this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The long-term material strength of geosynthetic reinforcement material is a critical design parameter for many civil engineering projects including, but not limited to, reinforced wall structures and reinforced slopes. Geosynthetic reinforcement products are produced using a variety of polymeric materials and using a variety of manufacturing procedures. Accordingly, product-specific testing using representative produced products is recommended for establishment of long-term material strength for products used as reinforcement in structures.4.2 The primary use of the test results obtained from a reinforcement testing program is to determine the available long-term (that is, end of design life, typically 75 years) material strength, Tal, of the reinforcement. The available long-term strength, Tal, is calculated as follows:4.3 This long-term geosynthetic reinforcement strength concept is illustrated in Fig. 1. As shown in the figure, some strength losses occur immediately upon installation, and others occur throughout the design life of the reinforcement. Much of the long-term strength loss does not begin to occur until near the end of the reinforcement design life.FIG. 1 Long-Term Geosynthetic Strength Concepts4.4 The value selected for Tult, for design purposes, is the minimum average roll value (MARV) for the product. This minimum average roll value, denoted as TMARV, accounts for statistical variance in the material strength. Other sources of uncertainty and variability in the long-term strength result from installation damage, creep extrapolation, and the chemical degradation process. It is assumed that the observed variability in the creep rupture envelope is 100 % correlated with the short-term tensile strength, as the creep strength is typically directly proportional to the short-term tensile strength within a product line. Therefore, the MARV of Tult adequately takes into account variability in the creep strength.4.5 In accordance with AASHTO R 69-15, the test program results provided in geosynthetic reinforcement design reduction factor test reports are focused on characterization of the product line, specifically testing representative products within the product line to accomplish that characterization.4.6 The guidelines provided in this document explain how to use the test data to characterize the entire product line with regard to long-term strength and durability properties.1.1 This guide presents a description of how to use test results from reduction factor test reports for reinforcement geosynthetics. It is based solely on testing and reporting requirements as established in American Association of State Highway and Transportation Officials (AASHTO) standard AASHTO R 69-15, Standard Practice for Determination of Long-Term Strength for Geosynthetic Reinforcement. AASHTO R 69-15 is used to determine the long-term allowable material strength, Tal, that is solely product property performance dependant.1.2 This guide is intended to assist designers and users of reinforcement geosynthetics when reviewing reports of reduction factor testing efforts. This guide is not intended to replace education or experience, or other alternative design procedures. This guide is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. Not all aspects of this guide may be applicable in all circumstances. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification deals with normalized and tempered, and quenched and tempered, carbon and alloy steel forged or rolled rings for reduction gears. The grades and classes of steels covered here are: Grade 1, Classes A and B, and Grade 2, Classes C and D, which are carbon steels; and Grade 3, Classes E and F, Grade 4, Classes G, H, I, J, K and L, Grade 5, Classes M and P, and Grade 6, Class T, which are alloy steels. Materials shall be manufactured by melting and forging processes and optional machining, and shall be allowed to cool prior to reheating. Heat treatment shall consist of normalizing and tempering for Grade 1, Classes A and B, and quenching and tempering for all other grades and classes. Heat and product analyses shall be performed wherein specimens shall conform to required chemical composition of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, vanadium, copper, and aluminum. Steels shall also undergo tension, impact, and Brinell hardness tests, and shall conform to the following mechanical requirements: tensile strength, yield strength, elongation, reduction of area, Brinell hardness, and Charpy V-notch.1.1 This specification covers normalized and tempered, and quenched and tempered, carbon and alloy steel forged or rolled rings for reduction gears.1.2 Several grades and classes of steel are covered as follows:1.2.1 Grade 1, Classes A and B, and Grade 2, Classes C and D, are carbon steel.1.2.2 Grade 3, Classes E and F, Grade 4, Classes G, H, I, J, K and L, Grade 5, Classes M and P, and Grade 6, Class T, are alloy steel.1.2.3 All grades and classes are considered weldable under proper conditions. Welding techniques are of fundamental importance and it is pre-supposed that welding procedure and inspection will be in accordance with proper methods for the class of material used.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 A clearance examination of abatement areas and other areas associated with other lead-hazard control activities, or building maintenance or modification activities in multifamily dwellings having similar units, common areas or exterior sites is performed to determine that the clearance area is adequately safe for reoccupancy.4.2 It is the responsibility of the user of this standard to assure that all regulatory, contractual, and personnel requirements are met prior to conduct of a clearance examination. At a minimum, users of this standard shall be trained in its use and in safe practices for its conduct.4.3 This practice is one of a set of standards developed for lead hazard management activities. The visual assessment procedures required in this standard are found in Practice E2255/E2255M and the record keeping requirements are found in Practice E2239.4.4 Although this practice was primarily developed for multifamily dwellings, this practice may be also applied to nonresidential buildings and related structures by agreement between the client and the individual conducting the clearance examination.4.5 This practice may be used by owners and property managers, including owner-occupants, and others responsible for maintaining facilities. It may also be used by lead hazard management consultants, construction contractors, labor groups, real estate and financial professionals, insurance organizations, legislators, regulators, and legal professionals.4.6 This standard does not address whether lead-hazard reduction activities or other building modification or maintenance work were done properly.1.1 This practice covers visual assessment for the presence of deteriorated paint, surface dust, painted debris, and paint chips with environmental sampling of surface dust to determine whether a lead hazard exists at the time of sample collection, following lead-hazard reduction activities, or other building maintenance and modification activities.1.2 This practice addresses clearance examination of multifamily dwellings having similar units, common areas or exterior sites.1.3 This practice also addresses clearance examinations that may include soil sampling, for example when soil abatement has been performed.1.4 This practice includes a procedure for determining whether regulatory requirements for lead clearance levels for dust and, where warranted, soil have been met, and, consequently whether a clearance area, passes or fails a clearance examination.NOTE 1: This practice is based on that portion of “clearance” described in 40 CFR Part 745 for abatement, and in 24 CFR 35 for lead-hazard reduction activities other than abatement, except that composite dust sampling as described therein is not used.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 Methods described in this practice may not meet or be allowed by requirements or regulations established by local authorities having jurisdiction. It is the responsibility of the user of this standard to comply with all such requirements and regulations.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This guide covers only the most obvious areas of overdraw safety.3.2 This guide is not intended as a comprehensive analysis of the subject.1.1 This guide covers the function of archery overdraws and suggests a limited number of geometric configurations that could decrease the potential risk of injury to the archer.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers normalized and tempered carbon steel, and liquid quenched and tempered alloy steel forgings for pinions, gears, and shafts for reduction gears. Prior to heat treatment for mechanical properties testing , steel materials may undergo machining and boring, after which specimens shall be stress relieved. Tensile, impact and Brinell hardness tests shall be performed wherein forgings shall conform to the following mechanical properties: tensile strength, yield strength, elongation, reduction of area, Charpy V-notch, and Brinell hardness. Specimens shall also conform to chemical requirements for carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, vanadium, copper, and aluminum.1.1 This specification covers normalized and tempered carbon steel and quenched and tempered alloy steel forgings for pinions, gears, and shafts.1.2 Several grades of steel are covered as follows:1.2.1 Grade 1, Class A,  is normalized and tempered carbon steel.1.2.2 Grade 2, Class B, Grade 3, Class C, Grade 3A, Class D, Grades 4 to 7, Classes E, F, G, and H, Grade 8, Class I, and Grade 9, Class J,  are liquid quenched and tempered alloy steel.1.3 All grades and classes are considered weldable under proper conditions. Welding technique is of fundamental importance and it is presupposed that welding procedure and inspection shall be in accordance with approved methods for the class of material used.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice outlines lead hazard reduction methods that have been shown to be effective in preventing lead poisoning in children.4.2 This practice tabulates advantages, disadvantages, and relative costs of the reduction methods to assist professionals such as certified lead-based paint risk assessors, supervisors, or project designers in selecting appropriate cost-effective options for controlling lead hazards identified during a lead risk assessment. Different control methods may be equally effective in controlling a given lead hazard and, consequently, the selection of a specific control method may depend on the needs and economic constraints of the client or building owner.4.3 This practice is intended to complement other lead hazard activities that are performed in accordance with regulations promulgated by authorities having jurisdiction. For example, in some jurisdictions, a lead hazard risk assessment, by regulation, consists of a visual assessment, a hazard assessment including environmental monitoring for lead, and selection of lead hazard reduction methods.4.4 This practice is intended to assist homeowners, owners and occupants of rental property, lenders, insurers, and others who have interest in selecting options for controlling lead hazards associated with leaded paint, dust, or soil.4.5 This practice complements Guide E2115. Information and data gathered in accordance with Guide E2115 and this practice are used in preparing a risk assessment report. Subsequent lead hazards are mitigated through implementation of controls selected in accordance with this present practice.4.6 This practice addresses the most commonly used lead hazard reduction methods. It is left to users of this practice to identify the advantages, disadvantages, and relative costs associated with emerging control technologies for comparison with these characteristics of established lead hazard control methods.4.7 This practice does not address specific historic preservation requirements. The interim control and abatement methods in this practice will work in any structure; however, historic preservation regulations promulgated by authorities having jurisdiction may impose specific interim control or abatement methods.1.1 This practice describes the selection of lead hazard reduction methods for controlling lead hazard risks identified during risk assessments of residential dwellings and child occupied facilities.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This practice contains notes, which are explanatory and are not part of the mandatory requirements of this standard.1.4 Methods described in this practice may not meet or be allowed by requirements or regulations established by local authorities having jurisdiction. It is the responsibility of the user of this standard to comply with all such requirements and regulations.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is designed to assess the purity of 2-mercaptobenzothiazole sulfenamide accelerators. These products are used in combination with sulfur for the vulcanization of rubber.5.2 The test method is suitable for assessing product specifications in that the property it measures is related to product performance. Since it is the primary property for comparison of product quality at different production facilities, good interlaboratory accuracy and precision is required.5.3 Based on past experience, two significant sources of error in this test method are: (1) incomplete reduction and (2) titration end point assessment. Problems in these areas can be avoided by closely following the procedure.1.1 This test method covers the determination of assay on mercaptobenzothiazole (MBT) sulfenamides. It is based on a titration of the basic amines liberated upon reduction of the sulfenamides with hydrogen sulfide gas (H2S)2 ,3 or 2-mercaptobenzothiazole.1.2 Any free amine (HNR2) or weak acid salts of the corresponding amine (HX·HNR2) are titrated prior to reduction. This titer is used to calculate percent basic impurity (as free amine) in the sample.1.3 With the indicated modifications, this test method is applicable to all MBT sulfenamides, that is, N-cyclohexyl-2-benzothiazolesulfenamide (CBS), N,N-diisopropyl-2-benzothiazyl sulfenamide (DIBS), 2 (morpholinothio) benzothiazole (MBS), N,N-dicylohexyl-2-benzothiazyl sulfenamide (DCBS), N-tert-butyl-benzothiazole-sulfenamide (TBBS), and 4-morpholinyl-2-benzothiazyl disulfide (MBSS).1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The force reduction property is just one of the important properties of a surface used for athletic activity. It may be an indicator of the performance, safety, comfort, or suitability of the surface.5.2 Manufacturers of athletic surfaces may use this test method to evaluate the effects of design changes on the impact forces generated on the surface.5.3 Facility owners may use this standard to evaluate the performance of existing sport/athletic surfaces. Results may be useful during the selection process for a replacement surface, or for an additional athletic surface being added to the facility.5.4 Facility owners may also use this test method to verify that newly installed surfaces perform at or near the levels included in project specifications.1.1 This test method covers the quantitative measurement and normalization of impact forces generated through a mechanical impact test on an athletic surface. The impact forces simulated in this test method are intended to represent those produced by lower extremities of an athlete during landing events on sport or athletic surfaces.1.2 This test method may be applied to any surface where athletic activity may be conducted.1.3 The test methods described are applicable in both laboratory and field settings.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended to be used for compliance with compositional specifications for iron content in manganese ores. It is assumed that all who use these procedures will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory and that proper waste disposal procedures will be followed. Appropriate quality control practices must be followed such as those described in Guide E882.1.1 This test method covers the determination of iron in manganese ore in the range from 2 % to 20 %.NOTE 1: As used in this test method (except as related to the term relative standard deviation), “percent” or “%” refers to mass fraction (wt/wt) of the form 1g/100g.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
38 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页