微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This practice permits an analyst to compare the performance of an NMR spectrometer for a particular test on any given day with the instrument's prior performance for that test. The practice can also provide sufficient quantitative performance information for problem diagnosis and solving. If complete information about how a test is carried out is supplied and sufficient replicates are collected to substantiate statistical relevance, the tests in this practice can be used to establish the setting and meeting of relevant performance specifications. This practice is not necessarily meant for the comparison of different instruments with each other, even if the instruments are of the same type and model. This practice is not meant for the comparison of the performance of different instruments operated under conditions differing from those specified for a particular test.1.1 This practice covers procedures for measuring and reporting the performance of Fourier-transform nuclear magnetic resonance spectrometers (FT-NMRs) using liquid samples.1.2 This practice is not directly applicable to FT-NMR spectrometers outfitted to measure gaseous, anisotropically structured liquid, semi-solid, or solid samples; those set up to work with flowing sample streams; or those used to make hyperpolarization measurements.1.3 This practice was expressly developed for FT-NMR spectrometers operating with proton resonance frequencies between 200 MHz and 1200 MHz.1.4 This practice is not directly applicable to continuous wave (scanning) NMR spectrometers.1.5 This practice is not directly applicable to instruments using single-sideband detection.1.6 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method is one of those required to determine if the presence of a medical device may cause injury to individuals during an MR examination or in the MR environment. Other safety issues which should be addressed include, but may not be limited to: magnetically induced torque (see Test Method F2213) and radiofrequency (RF) heating (see Test Method F2182). The terms and icons in Practice F2503 should be used to mark the device for safety in the magnetic resonance environment.5.2 If the maximum magnetically induced displacement force for the specified magnetic field conditions (see Appendix X3) is less than the force on the device due to gravity (its weight), it is assumed that any risk imposed by the application of the magnetically induced force is no greater than any risk imposed by normal daily activity in the Earth’s gravitational field. This statement does not constitute an acceptance criterion; it is provided as a conservative reference point. It is possible that a greater magnetically induced displacement force can be acceptable and would not harm a patient or other individual in a specific case.NOTE 2: For instance, in the case of an implanted device that is or could be subjected to a magnetic displacement force greater than the force due to gravity, the location of the implant, surrounding tissue properties, and means of fixation within the body may be considered. For a non-implanted device with a magnetically induced force greater than the gravitational force, consideration should be given to mitigate the projectile risk which may include fixing or tethering the device or excluding it from the MR environment so that it does not become a projectile.5.3 The maximum static magnetic field strength and spatial field gradient vary for different MR systems. Appendix X3 provides guidance for calculating the allowable static magnetic field strength and spatial field gradient.5.4 This test method alone is not sufficient for determining if a device is safe in the MR environment.1.1 This test method covers the measurement of the magnetically induced displacement force produced by static magnetic field gradients (spatial field gradient) on medical devices and the comparison of that force to the weight of the medical device.1.2 This test method does not address other possible safety issues which include, but are not limited to: issues of magnetically induced torque, radiofrequency (RF) heating, induced heating, acoustic noise, interaction among devices, and the functionality of the device and the magnetic resonance (MR) system.1.3 This test method is intended for devices that can be suspended from a string. Devices which cannot be suspended from a string are not covered by this test method. The weight of the string from which the device is suspended during the test must be less than 1 % of the weight of the tested device.1.4 This test method shall be carried out in a horizontal bore MR system with a static magnetic field oriented horizontally and parallel to the MR system bore.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Magnetic resonance imaging is ideally suited to image MOM hip arthroplasty due to its superior soft tissue contrast, multiplanar capabilities and lack of ionizing radiation. MR imaging is the most accurate imaging modality for the assessment of peri-prosthetic osteolysis and wear-induced synovitis (19, 20).5.2 Before scanning a patient with a specific implant, the MR practitioner shall confirm that the device is MR Conditional and that the scan protocol to be used satisfies the conditions for safe scanning for the specific implant.5.3 This guide can be used to identify the following adverse events.5.3.1 Osteolysis—Magnetic resonance imaging is superior to conventional radiographs and computer tomography (CT) in the assessment of peri-prosthetic osteolysis and has been shown to be the most accurate method to locate and quantify the extent of peri-prosthetic osteolysis (19, 21). On MR imaging, osteolysis appears as well marginated intraosseous intermediate to slightly increased signal intensity lesions that contrast with the high signal intensity of the intramedullary fat. A characteristic line of low signal intensity surrounds the area of focal marrow replacement, distinguishing the appearance of osteolysis from tumoral replacement of bone or infection (22).FIG. 4 Coronal (left) and Axial (right) FSE Images of a Left MOM Hip ArthroplastyNOTE 1: There is focal osteolysis (white arrows) in the greater trochanter, which manifests as well-demarcated intermediate signal intensity, similar to that of skeletal muscle, replacing the normal high signal intensity fatty marrow. Images courtesy of Dr. Hollis Potter.5.3.2 Component Loosening—While the data are preliminary, MR imaging can identify circumferential bone resorption that may indicate component loosening. Loosening may result from osteolysis, circumferential fibrous membrane formation or poor osseous integration of a non-cemented component. On MR imaging, component loosening typically manifests as circumferential increased signal intensity at the metallic-bone or cement-bone interface on fat-suppressed techniques (20). The finding of circumferential fibrous membrane formation or osteolysis also indicates potential loosening; this is in contrast to a well-fixed component, with high signal intensity fatty marrow directly opposed to the implant interface.5.3.3 Wear-Induced Synovitis—Magnetic resonance imaging is the most useful imaging modality to assess the intracapsular burden of wear-induced synovitis surrounding MOM arthroplasty (23). Preliminary data indicate that the signal characteristics of the synovial response on MR imaging correlate with the type of wear-induced synovitis demonstrated on histology at revision surgery (24). Low signal intensity debris is suggestive of metallic debris on histology. Mixed intermediate and low signal debris correlate with the presence of mixed polymeric (polyethylene and/or polymethyl methacrylate) and metallic debris at histology. Magnetic resonance imaging can demonstrate decompression of synovitis or fluid into adjacent bursae, such as the iliopsoas or trochanteric bursa, which can present as soft tissue masses or with secondary nerve compression. On occasion, wear-induced synovitis can result in a chronic indolent pattern of erosion of the surrounding bone, even in the absence of focal osteolytic lesions (6).FIG. 5 Axial (left) and Coronal (right) FSE Images of a Left MOM Hip ArthroplastyNOTE 1: Wear-induced synovitis decompresses into the abductor musculature where there is low signal intensity debris (arrow), consistent with metallic debris. Images courtesy of Dr. Hollis Potter.5.3.4 Infection—In the setting of infection, the synovium often demonstrates a hyperintense, lamellated appearance with adjacent extracapsular soft tissue edema. These appearances help to distinguish the synovial pattern of infection from wear-induced synovitis, although aspiration is still required for definitive diagnosis (22). The presence of a soft tissue collection, draining sinus or osteomyelitis further supports the diagnosis of infection on MR imaging.FIG. 6 Axial FSE (left) and Inversion Recovery (right) Images of a Right MOM Hip AthroplastyNOTE 1: There is a lamellated synovitis (black arrow) with adjacent extracapsular soft tissue edema (white arrow). Infection was confirmed at subsequent aspiration. Images courtesy of Dr. Hollis Potter.5.3.5 Adverse Local Tissue Response—Adverse local tissue reactions can manifest as synovitis, bursitis, osteolysis and cystic or solid masses adjacent to the arthroplasty, which may be termed pseudotumors (19, 20). ALTR can also include the histopathologic feature of aseptic lymphocytic vasculitis-associated lesions (ALVAL), which can be confirmed at histology. A relatively common appearance of joints with ALVAL is expansion of the capsule with homogenous high signal fluid interspersed with intermediate signal intensity foci. More recent studies suggest that maximum synovial thickness and the presence of more solid synovial deposits highly correlate with tissue damage at revision surgery and necrosis at histologic inspection (15).FIG. 7 Axial FSE Image in a Right MOM Hip ArthroplastyNOTE 1: Fig. 7 demonstrates a large collection of fluid in the trochanteric bursa (arrow), which communicates with the hip joint via a dehiscence in the posterior pseudocapsule (not shown in these images). The fluid is high signal with fine intermediate signal intensity debris. A high ALVAL score was confirmed on histology at revision surgery. Images courtesy of Dr. Hollis Potter.FIG. 8 Axial FSE Image in a Right MOM Hip Resurfacing ArthroplastyNOTE 1: Fig. 8 demonstrates expansion of the pseudocapsule with fluid signal intensity decompressing into the trochanteric bursa. The pseudocapsule is thickened and of intermediate signal intensity (black arrows). There is additional solid extracapsular disease anteriorly (white arrow). At revision surgery, a mixed picture of ALVAL and metallosis was seen.5.3.6 Modular Taper Associated ALTR—MRI can accurately describe ALTR attributed to tribocorrosion in modular femoral neck total hip arthroplasty. MRI characteristics, particularly maximal synovial thickness and synovitis volume, can predict histologic severity (22, 23). In addition, intra-capsular ALTR around either resurfacing MOM arthroplasty or around the trunnion in MOM THA may be obscured if 3D-MSI techniques are not utilized due to the susceptibility artifact. High-bandwidth FSE or FSE with view-angle tilt are not sufficient.NOTE 1: Modular taper ALTR may occur in non-metal-on-metal implants as well as in metal-on-metal arthroplasty.1.1 This guide describes the recommended protocol for magnetic resonance imaging (MRI) studies of patients implanted with metal-on-metal (MOM) devices to determine if the periprosthetic tissues are likely to be associated with an adverse local tissue reaction (ALTR). Before scanning a patient with a specific implant, the MR practitioner shall confirm that the device is MR Conditional and that the scan protocol to be used satisfies the conditions for safe scanning for the specific implant. This guide assumes that the MRI protocol will be applied to MOM devices while they are implanted inside the body. It is also expected that standardized MRI safety measures will be followed during the performance of this scan protocol.1.2 This guide covers the clinical evaluation of the tissues surrounding MOM hip replacement devices in patients using MRI. This guide is applicable to both total and resurfacing MOM hip systems.1.3 The protocol contained in this guide applies to whole body magnetic resonance equipment, as defined in section 201.3.239 of IEC 60601-2-33, Ed. 3.2, with a whole body radiofrequency (RF) transmit coil as defined in section 201.3.240. The RF coil should have circulary polarized RF excitation (also commonly referred to as quadrature excitation) as defined in section 201.3.249 of IEC 60601-2-33, Ed. 3.2..1.4 The values stated in SI units are to be regarded as standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. The user may consider all precautions and warnings provided in the MR system and hip implant labeling prior to determining the applicability of these protocols.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Hydrogen content represents a fundamental quality of a petroleum distillate that has been correlated with many of the performance characteristics of that product. Combustion properties of gas turbine fuels are related primarily to hydrogen content. As hydrogen content of these fuels decreases, soot deposits, exhaust smoke, and thermal radiation increase. Soot deposits and thermal radiation can increase to the point that combustor liner burnout will occur. Hydrogen content is a procurement requirement of the following military fuels: JP-5 specified in MIL-DTL-5624, JP-8 specified in MIL-DTL-83133, and Naval Distillate Fuel specified in MIL-DTL-16884.5.2 This test method provides a simple and precise alternative to existing test methods (D3701, D4808, and D5291) for determining the hydrogen content of petroleum distillate products.1.1 This test method covers the determination of the hydrogen content of middle distillate petroleum products using a low-resolution pulsed nuclear magnetic resonance (NMR) spectrometer. The boiling range of distillates covered by the test method is 150 °C to 390 °C. While this test method may be applicable to middle distillates outside this boiling range, in such cases the precision statements may not apply. The test method is generally based on Test Methods D3701 and D4808, with a major difference being the use of a pulsed NMR spectrometer instead of a continuous wave NMR spectrometer.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 The preferred units are mass %.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 The hydrogen content represents a fundamental quality of a petroleum product that has been correlated with many of the performance characteristics of that product.5.2 This test method provides a simple and more precise alternative to existing test methods, specifically combustion techniques (Test Methods D5291) for determining the hydrogen content on a range of petroleum products.1.1 These test methods cover the determination of the hydrogen content of petroleum products ranging from atmospheric distillates to vacuum residua using a continuous wave, low-resolution nuclear magnetic resonance spectrometer. (Test Method D3701 is the preferred method for determining the hydrogen content of aviation turbine fuels using nuclear magnetic resonance spectroscopy.)1.2 Three test methods are included here that account for the special characteristics of different petroleum products and apply to the following distillation ranges:Test Method Petroleum Products Boiling Range, °C (°F)(approximate)A Light Distillates 15–260 (60–500)B Middle Distillates 200–370 (400–700)   Gas Oils 370–510 (700–950)C Residua 510+ (950+ )1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. The preferred units are mass %.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Sections 7.2 and 7.4.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The combustion quality of aviation turbine fuel has traditionally been controlled in specifications by such tests as smoke point (see Test Method D1322), smoke volatility index, aromatic content of luminometer number (see Test Method D1740). Evidence is accumulating that a better control of the quality may be obtained by limiting the minimum hydrogen content of the fuel.5.2 Existing methods allow the hydrogen content to be calculated from other parameters or determined by combustion techniques. The method specified provides a quick, simple, and more precise alternative to these methods.1.1 This test method covers the determination of the hydrogen content of aviation turbine fuels.1.2 Use Test Methods D4808 or D7171 for the determination of hydrogen in other petroleum liquids.1.3 The values stated in SI units are to be regarded as standard. The preferred units are mass percent hydrogen.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific warning statement, see 7.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method may be used for material development, characterization, design data generation, and quality control purposes.5.2 This test method is primarily concerned with the room temperature determination of the dynamic moduli of elasticity and rigidity of slender rods or bars composed of homogeneously distributed carbon or graphite particles.5.3 This test method can be adapted for other materials that are elastic in their initial stress-strain behavior, as defined in Test Method E111.5.4 This basic test method can be modified to determine elastic moduli behavior at temperatures from –75 °C to +2500 °C. Thin graphite rods may be used to project the specimen extremities into ambient temperature conditions to provide resonant frequency detection by the use of transducers as described in 7.1.1.1 This test method covers determination of the dynamic elastic properties of isotropic and near isotropic carbon and graphite materials at ambient temperatures. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. The dynamic elastic properties of a material can therefore be computed if the geometry, mass, and mechanical resonant frequencies of a suitable (rectangular or cylindrical) test specimen of that material can be measured. Dynamic Young's modulus is determined using the resonant frequency in the flexural or longitudinal mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young's modulus and dynamic shear modulus are used to compute Poisson's ratio.1.2 This test method determines elastic properties by measuring the fundamental resonant frequency of test specimens of suitable geometry by exciting them mechanically by a singular elastic strike with an impulse tool. Specimen supports, impulse locations, and signal pick-up points are selected to induce and measure specific modes of the transient vibrations. A transducer (for example, contact accelerometer or non-contacting microphone) senses the resulting mechanical vibrations of the specimen and transforms them into electric signals. (See Fig. 1.) The transient signals are analyzed, and the fundamental resonant frequency is isolated and measured by the signal analyzer, which provides a numerical reading that is (or is proportional to) either the frequency or the period of the specimen vibration. The appropriate fundamental resonant frequencies, dimensions, and mass of the specimen are used to calculate dynamic Young's modulus, dynamic shear modulus, and Poisson's ratio. Annex A1 contains an alternative approach using continuous excitation.FIG. 1 Block Diagram of Typical Test Apparatus1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1 Scope and object This clause of the General Standard applies except as follows: 1.1 Scope Addition: This Particular Standard applies to MAGNETIC RESONANCE EQUIPMENT as defined in 2.2.101 and MAGNETIC RESONANCE SYSTEMS as defined in 2.2.102. Thi

定价: 2275元 / 折扣价: 1934

在线阅读 收 藏

5.1 Methyl hydrogen content is a key characteristic of hydrocarbon lubricating oils and can affect a variety of properties of the oil including its boiling range, viscosity, low temperature flow, and oxidation stability.5.2 The NMR procedure does not require calibration standards of known methyl hydrogen content and is applicable to a wide range of hydrocarbon lubricating oils that are completely soluble in chloroform at ambient temperature.1.1 This test method covers the determination of the total methyl hydrogen content of unadditized base stock (lubricating oils) hydrocarbon oils that are completely soluble in chloroform at ambient temperature using high-resolution nuclear magnetic resonance (NMR) spectrometers.1.2 The reported units are mol percent methyl hydrogen atoms. For pulse Fourier transform (FT) spectrometers, the detection limit is typically 0.1 % mol hydrogen atoms. The interim precision is applicable in the range 20.5 % to 38.7 % mol methyl hydrogen.1.3 This method is applicable to samples containing <0.1 % mol olefinic hydrogens.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2 and 7.3.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the measurement of the ferrimagnetic resonance linewidth and gyromagnetic ratio of isotropic microwave ferrites. This test is restricted to spherical specimens possessing resonance linewidths greater than 10 Oe [796 A/m].1.2 The values and equations stated in customary (cgs-emu and inch-pound) or SI units are to be regarded separately as standard. Within this standard, SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 PCRT Applications and Capabilities—PCRT has been applied successfully to a wide range of outlier screening applications in the manufacture and maintenance of metallic and non-metallic parts. Examples of anomalies detected are discussed in 1.1. PCRT has been shown to provide cost effective and accurate outlier screening solutions in many industries including automotive, aerospace, and power generation. Examples of successful applications currently employed in commercial use include, but are not limited to:(1) Silicon nitride bearing elements,(2) Steel, iron, and aluminum rocker and control arms,(3) Aircraft and industrial gas turbine engine components (blades, vanes, disks),(4) Cast cylinder heads and cylinder blocks,(5) Sintered powder metal gears and clutch plates,(6) Machined forged steel steering and transmission components (gears, shafts, racks),(7) Ceramic oxygen sensors,(8) Silicon wafers,(9) Gears, including those with induction hardened or carburized teeth,(10) Ceramic matrix composite (CMC) material samples and components,(11) Components with shot peened surfaces,(12) Machined or rolled-formed steel fasteners, or both,(13) Components made with additive manufacturing,(14) Aircraft landing gear, wheel and brake components, and(15) Components made with metal injection molding.5.2 General Approach and Equipment Requirements for PCRT via Swept Sine Input: 5.2.1 PCRT systems are comprised of hardware and software capable of inducing swept sine vibrations, recording the component response to the induced vibrations, and executing analysis of the data collected. Inputting a swept sine wave into the part has proven to be an effective means of introducing mechanical vibration and can be achieved with a high quality signal generator coupled with an appropriate active transducer in physical contact with the part. Collection of the part’s frequency response can be achieved by recording the signal generated by an appropriate passive vibration transducer. The software required to analyze the available data may include a variety of suitable statistical analysis and pattern recognition tools. Measurement accuracy and repeatability are extremely important to the application of PCRT.5.2.2 Hardware Requirements—A swept sine wave signal generator and response measurement system operating over the desired frequency range of the test part are required with accuracy better than 0.002 %. The signal generator should be calibrated to applicable industry standards. Transducers must be operable over same frequency range. Three transducers are typically used; one “drive” transducer and two “receive” transducers. Transducers typically operate in a dry environment, providing direct contact coupling to the part under examination. However, noncontacting response methods can operate suitably when parts are wet or oil-coated. Other than fixturing and transducer contact, no other contact with the part is allowed as these mechanical forces dampen certain vibrations. For optimal examination, parts should be placed precisely on the transducers (generally, ±0.062 in. (1.6 mm) in each axis provides acceptable results). The examination nest and cabling shall isolate the drive from receive signals and ground returns, so as to not produce (mechanical or electrical) cross talk between channels. Excessive external vibration or audible noise, or both, will compromise the measurements.5.3 Constraints and Limitations: 5.3.1 PCRT cannot separate parts based on visually detectable anomalies that do not affect the structural integrity of the part. It may be necessary to provide additional visual inspection of parts to identify these indications.5.3.2 Excessive process variation of parts may limit the sensitivity of PCRT outlier screening.5.3.3 Specific anomaly identification is highly unlikely. PCRT is a whole body measurement, so differentiating between a crack and a void in the same location is generally not possible. It may be possible to differentiate some anomalies by using multiple patterns and teaching sets. The use of physics-based modeling and simulation to predict the resonance frequency spectrum of a component may also allow relationships between resonance frequencies and defect locations/characteristics to be established.5.3.4 PCRT will only work with stiff objects that provide resonances whose peak quality factor (Q) values are greater than 500. Non-rigid materials or very thin-walled parts may not yield satisfactory Q values.5.3.5 While PCRT can be applied to painted and coated parts in many cases, the presence of some surface coatings such as vibration absorbing materials and heavy oil layers may limit or preclude the application of PCRT.5.3.6 While PCRT can be applied to parts over a wide range of temperatures, it should not be applied to parts that are rapidly changing temperature. The part temperature should be stabilized before collecting resonance data.5.3.7 Misclassified parts in the teaching set, along with the presence of unknown anomalies in the teaching set, can significantly reduce the accuracy and sensitivity of PCRT.1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to perform outlier screening on populations of newly manufactured and in-service parts. PCRT excites the resonance frequencies of metallic and non-metallic test components using a swept sine wave input over a set frequency range. PCRT detects and analyzes component resonance frequency patterns and uses the differences in resonance patterns between acceptable and unacceptable components to perform non-destructive testing. PCRT frequency analysis compares the resonance pattern of a component to the patterns of known reference populations of the same component and renders a pass or fail result based on the similarity of the tested component to those populations. For non-destructive testing applications with known defects or material states of interest, or both, Practice E2534 covers the development and application of PCRT sorting modules that compare test components to known acceptable and unacceptable component populations. However, some applications do not have physical examples of components with known defects or material states. Other applications experience isolated component failures with unknown causes or causes that propagate from defects that are beyond the sensitivity of the current required inspections, or both. In these cases, PCRT is applied in an outlier screening mode that develops a sorting module using only a population of presumed acceptable production components, and then compares test components for similarity to that presumed acceptable population. The resonance differences can be used to distinguish acceptable components with normal process variation from outlier components that may have material states or defects, or both, that will cause performance deficiencies. These material states and defects include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density-related anomalies, heat treatment variations, material elastic property differences, residual stress, and dimensional variations. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple, whole body, mechanical vibration resonance frequencies in acoustic or ultrasonic frequency ranges, or both.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 IEM Applications and Capabilities—IEM has been successfully applied to a wide range of NDT applications in the manufacture, maintenance, and repair of metallic and non-metallic parts. Examples of anomalies detected are discussed in 1.1 and 6.2. IEM has been proven to provide fast, cost-effective, and accurate NDT solutions in nearly all manufacturing, maintenance, or repair modalities. Examples of the successful application focuses include, but are not limited to: sintered powder metals, castings, forgings, stampings, ceramics, glass, wood, weldments, heat treatment, composites, additive manufacturing, machined products, and brazed products.4.2 General Approach and Equipment Requirements for IEM: 4.2.1 IEM systems are comprised of hardware and software capable of inducing vibrations, recording the component response to the induced vibrations, and executing analysis of the data collected.4.2.2 Hardware Requirements—Examples of a tabletop impact excitation system and a production-grade drop excitation system are shown in Fig. 1 and Fig. 2, respectively. IEM systems include: an excitation device (for example, modal hammer / impact device / dropping system) providing an impulse excitation to the object, a vibration detector (for example., microphone), a signal amplifier, an Analog-to-Digital Converter (ADC), an embedded logic, and a data User Interface (UI). Tested parts can typically be on any surface type, but they can also be supported (for example, foam support, held with an elastic) in consideration of possible damping influences. The following schematics show the basic parts for an impact excitation approach (Fig. 3) and a drop excitation approach (Fig. 4).FIG. 1 IEM Tabletop Testing System Using a Non-Instrumented ImpactorFIG. 2 Production-Grade Drop Excitation SystemFIG. 3 Schematic of Impact Excitation ApproachFIG. 4 Schematic of Drop Excitation Approach4.3 Constraints and Limitations: 4.3.1 IEM needs a change in structural integrity to properly sort different parts. This means that parts with only cosmetic issues, such as a visual surface anomaly would still need be inspected with a focused visual inspection.4.3.2 The location of a flaw or specific flaw type characterization is challenging. As IEM measures the whole-body response of a part, location and categorization of defects usually requires additional data (such as additional nondestructive and destructive evaluation) and analysis.4.3.3 Large raw material or process variation, or both, may limit the sensitivity of IEM without some method for compensating for those variations.4.3.4 Groups of parts with a wide range of physical temperatures are not good subjects for IEM without some method for compensating for those variations. Temperature affects the natural frequencies, so stabilization of temperature is desired for parts testing. Data can be taken over a large range of temperatures, as long as the parts are stable during the testing.4.3.5 IEM is a volumetric inspection method. Sensitivity to defects will be driven by the size of the defect relative to the size and mass of the part. For example, a small hairline crack of a certain length that may be detectable in a 0.5 lb part may not be detectable in a 100 lb part.4.3.6 The expected useful frequency range of the part to be tested must be considered when selecting and configuring an IEM examination. Many IEM systems are limited to detecting frequencies up to 50 kHz, but more modern systems have demonstrated detection of frequencies up to 150 kHz on some parts. Parts with small dimensions or parts made from certain materials, or both, may have resonance spectra that fall partially or entirely outside of the frequency range of some IEM systems. The physics of energy distribution from the impulse and attenuation from interfering harmonic modes can also cause a reduction in signal-to-noise ratio at the higher end of IEM frequency ranges.4.3.7 Materials that resonate poorly or dampen vibrations are typically not good candidates for IEM examination.1.1 This practice covers a general procedure for using the Impulse Excitation Method (IEM) to facilitate natural frequency measurement and detection of defects and material variations in metallic and non-metallic parts. This test method is also known as Impulse Excitation Technique (IET), Acoustic Resonance Testing (ART), ping testing, tap testing, and other names. IEM is listed as a Resonance Ultrasound Spectroscopy (RUS) method. The method applies an impulse load to excite and then record resonance frequencies of a part. These recorded resonance frequencies are compared to a reference population or within subgroups/families of examples of the same part, or modeled frequencies, or both.1.2 Absolute frequency shifting, resonance damping, and resonance pattern differences can be used to distinguish acceptable parts from parts with material differences and defects. These defects and material differences include, cracks, voids, porosity, material elastic property differences, and residual stress. IEM can be applied to parts made with manufacturing processes including, but not limited to, powdered metal sintering, casting, forging, machining, composite layup, and additive manufacturing (AM).1.3 This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple whole body, mechanical vibration resonance frequencies in acoustic or ultrasonic frequency ranges, or both. This practice does not provide inspection acceptance criteria for parts. However, it does discuss the processes for establishing acceptance criteria specific to impulse testing. These criteria include frequency acceptability windows for absolute frequency shifting, scoring criteria for statistical analysis methods (Z-score), Gage Repeatability & Reproducibility (R&R) for diagnostic resonance modes, and inspection criteria adjustment (compensation) for manufacturing process and environmental variations.1.4 This practice uses inch pound units as primary units. SI units are included in parentheses for reference only and are mathematical conversions of the primary units.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method describes a test procedure for evaluating the ∆T associated with RF power deposition during an MR procedure, involving a specific frequency of RF irradiation of a passive implant. The method allows characterization of the heating propensity of an implant rather than the prediction of heating during a specific MR procedure in a patient. The results may be used as an input to a computational model for estimating ∆T due to the presence of that implant in a patient. The combination of the test results and the computational model results may then be used to help assess the safety of a patient with the implant during an MR examination.1.1 This test method covers measurement of radio frequency (RF)-induced heating on or near a passive medical implant within a phantom during magnetic resonance imaging (MRI). The test method does not specify levels of heating considered to be safe to the patient and relies on users to define their own acceptance criteria.1.2 This test method does not address other possible safety issues which include, but are not limited to: issues of magnetically-induced displacement, magnetically-induced torque, image artifact, acoustic noise, tissue heating, interaction among devices, and the functionality of the device and the MR system.1.3 The amount of RF-induced temperature rise (∆T) for a given incident electric field will depend on the RF frequency, which is dependent on the static magnetic field strength of the MR system. While the focus in this test method is on 1.5 tesla (T) or 3 T MR systems, the ∆T for an implant in MR systems of other static magnetic field strengths or magnet designs can be evaluated by suitable modification of the method described herein.1.4 This test method assumes that testing is done on devices that will be entirely inside the body. Testing for devices with other implantation conditions (e.g., external fixation devices, percutaneous needles, catheters or tethered devices such as ablation probes) is beyond the scope of this standard; for such devices, modifications of this test method may be necessary.NOTE 1: RF-heating induced by any electrically conductive implanted device may be impacted by the presence of other metallic or otherwise electrically conductive devices present nearby.1.5 This test method is written for several possible RF exposure systems, including Volume RF transmit coils. The exposure system needs to be properly characterized, within the stated uncertainties, in term of local background RF exposure for the implants which are tested.1.6 The values stated in SI units are to be regarded as standard.1.7 A device with deployed dimensions of less than 2 cm in all directions may not need to be tested with respect to RF-induced heating, as it is expected to generate ∆T of less than 2°C over 1 h of exposure at 1.5 T/64-MHz or 3 T/128-MHz frequencies (1, 2)2 and ANSI/AAMI/ISO 14708-3:2017). This condition is not valid when multiple replicas of the device (e.g., multiple anchors) are implanted within 3 cm of the device.NOTE 2: The above values were derived from existing data and literature. The 3 cm distance is recommended to avoid any RF coupling with other neighboring devices.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This test system has advantages in certain respects over the use of static loading systems in the measurement of ceramic whitewares.3.1.1 Only minute stresses are applied to the specimen, thus minimizing the possibility of fracture.3.1.2 The period of time during which stress is applied and removed is of the order of hundreds of microseconds, making it feasible to perform measurements at temperatures where delayed elastic and creep effects proceed on a much-shortened time scale.3.2 This test method is suitable for detecting whether a material meets specifications, if cognizance is given to one important fact: ceramic whiteware materials are sensitive to thermal history. Therefore, the thermal history of a test specimen must be known before the moduli can be considered in terms of specified values. Material specifications should include a specific thermal treatment for all test specimens.1.1 This test method covers the determination of the elastic properties of ceramic whiteware materials. Specimens of these materials possess specific mechanical resonance frequencies which are defined by the elastic moduli, density, and geometry of the test specimen. Therefore the elastic properties of a material can be computed if the geometry, density, and mechanical resonance frequencies of a suitable test specimen of that material can be measured. Young’s modulus is determined using the resonance frequency in the flexural mode of vibration. The shear modulus, or modulus of rigidity, is found using torsional resonance vibrations. Young’s modulus and shear modulus are used to compute Poisson’s ratio, the factor of lateral contraction.1.2 All ceramic whiteware materials that are elastic, homogeneous, and isotropic may be tested by this test method.2 This test method is not satisfactory for specimens that have cracks or voids that represent inhomogeneities in the material; neither is it satisfactory when these materials cannot be prepared in a suitable geometry.NOTE 1: Elastic here means that an application of stress within the elastic limit of that material making up the body being stressed will cause an instantaneous and uniform deformation, which will cease upon removal of the stress, with the body returning instantly to its original size and shape without an energy loss. Many ceramic whiteware materials conform to this definition well enough that this test is meaningful.NOTE 2: Isotropic means that the elastic properties are the same in all directions in the material.1.3 A cryogenic cabinet and high-temperature furnace are described for measuring the elastic moduli as a function of temperature from −195 to 1200 °C.1.4 Modification of the test for use in quality control is possible. A range of acceptable resonance frequencies is determined for a piece with a particular geometry and density. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each piece need not be determined as long as the limits of the selected frequency range are known to include the resonance frequency that the piece must possess if its geometry and density are within specified tolerances.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
28 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页