微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 819元 / 折扣价: 697

在线阅读 收 藏

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

4.1 The long-term material strength of geosynthetic reinforcement material is a critical design parameter for many civil engineering projects including, but not limited to, reinforced wall structures and reinforced slopes. Geosynthetic reinforcement products are produced using a variety of polymeric materials and using a variety of manufacturing procedures. Accordingly, product-specific testing using representative produced products is recommended for establishment of long-term material strength for products used as reinforcement in structures.4.2 The primary use of the test results obtained from a reinforcement testing program is to determine the available long-term (that is, end of design life, typically 75 years) material strength, Tal, of the reinforcement. The available long-term strength, Tal, is calculated as follows:4.3 This long-term geosynthetic reinforcement strength concept is illustrated in Fig. 1. As shown in the figure, some strength losses occur immediately upon installation, and others occur throughout the design life of the reinforcement. Much of the long-term strength loss does not begin to occur until near the end of the reinforcement design life.FIG. 1 Long-Term Geosynthetic Strength Concepts4.4 The value selected for Tult, for design purposes, is the minimum average roll value (MARV) for the product. This minimum average roll value, denoted as TMARV, accounts for statistical variance in the material strength. Other sources of uncertainty and variability in the long-term strength result from installation damage, creep extrapolation, and the chemical degradation process. It is assumed that the observed variability in the creep rupture envelope is 100 % correlated with the short-term tensile strength, as the creep strength is typically directly proportional to the short-term tensile strength within a product line. Therefore, the MARV of Tult adequately takes into account variability in the creep strength.4.5 In accordance with AASHTO R 69-15, the test program results provided in geosynthetic reinforcement design reduction factor test reports are focused on characterization of the product line, specifically testing representative products within the product line to accomplish that characterization.4.6 The guidelines provided in this document explain how to use the test data to characterize the entire product line with regard to long-term strength and durability properties.1.1 This guide presents a description of how to use test results from reduction factor test reports for reinforcement geosynthetics. It is based solely on testing and reporting requirements as established in American Association of State Highway and Transportation Officials (AASHTO) standard AASHTO R 69-15, Standard Practice for Determination of Long-Term Strength for Geosynthetic Reinforcement. AASHTO R 69-15 is used to determine the long-term allowable material strength, Tal, that is solely product property performance dependant.1.2 This guide is intended to assist designers and users of reinforcement geosynthetics when reviewing reports of reduction factor testing efforts. This guide is not intended to replace education or experience, or other alternative design procedures. This guide is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. Not all aspects of this guide may be applicable in all circumstances. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Each year, many thousands of water samples are collected and the chemical components are determined from natural groundwater sources. An understanding of the relationships between the similarities and differences of these water analyses are facilitated by displaying each separate analysis as a pictorial diagram. This type of diagram allows for a direct comparison between two or more analyses and their displayed ions. This guide presents a compilation of diagrams that allows for transformation of numerical data into visual, usable forms. It is not a guide to selection or use. That choice is program or project specific. The single sample water-analysis diagrams described in this guide display the following; (1) the ppm or mg/L concentrations of the cations and anions on bars, circles, or baseline diagrams; (2) the epm or meq/L percentages of the cation and anion weights on bars, double bars, circles, radiating vectors, or kitelike shapes and; (3) a combination of (1) and (2) on circles (1, 3, 25, 27, 28, 29). The classification of the composition of natural groundwater is an early use of the single sample water-analysis diagram. Note 3—Palmer, in 1911, developed a tabular system for the classification of natural water. Rogers, in a 1917 study of oil-field waters, presented the Palmer classification on a graphical display that had three vertical bars (6, 7, 29). The origin of the water may be postulated by the amount and the relationship of the cations and anions in a water sample that is plotted on the diagram. Patterns visually indicate water types and origins. Comparison of the visual similarity or dissimilarity of diagrams for different water analyses that are from separate locations allows the analyst to evaluate if the samples may be from the same water source or not. Numerous interpretive methods are possible from the examination of a series of the single sample water-analysis diagrams. Note 4—For example, by arranging the diagrams at the point of origin as represented on a geologic cross section or on an areal map, the hydrochemical changes can be visualized as the water travels through the hydrologic regime, the amount of mixing that has taken place with water from a different origin, and the effects of ambient conditions, such as air, temperature, rock, and man-induced contaminants, on the water. Note 5—It should be noted that for many hydrochemical research problems involving the interpretation of the origin, chemical reactions, and mixing of natural water, the single sample water-analysis diagram is only one segment of several analytical methods needed to understand condition.1.1 This guide covers the category of water-analysis diagrams that use pictorial or pattern methods (for example, bar, radiating vectors, pattern, and circular) as a basis for displaying each of the individual chemical components that were determined from the analysis of a single sample of natural groundwater (see Terminology). 1.2 This guide on single-analysis diagrams is the second of several standards to inform the professionals in the field of hydrology with the traditional graphical methods available to display groundwater chemistry. Note 1—The initial guide described the category of water-analysis diagrams that use two-dimensional trilinear graphs to display, on a single diagram, the common chemical components from two or more complete analyses of natural groundwater. 1.2.1 A third guide will be for diagrams based on data analytical calculations that include those categories of water analysis graphs where multiple analyses are analyzed statistically and the results plotted on a diagram (for example, the box, and so forth). 1.3 Numerous methods have been developed to display, on single-analyses diagrams, the ions dissolved in water. These methods were developed by investigators to assist in the interpretation of the origin of the ions in the water and to simplify the comparison of analyses, one with another. 1.4 This guide presents a compilation of diagrams from a number of authors that allows for transformation of numerical data into visual, usable forms. It is not a guide to selection or use. That choice is program or project specific. Note 2—Use of tradenames in this guide is for identification purposes only and does not constitute endorsement by ASTM. 1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Many competent measurement laboratories comply with accepted quality system requirements such as ISO 9001, QS 9000, or ISO 17025. When using standard test methods, the measurement results should agree with those from other similar laboratories within the combined uncertainty limits of the laboratories’ measurement systems. It is for this reason that quality system requirements demand that a statement of the uncertainty of the test results accompany every test result.5.2 Preparation of uncertainty estimates is a requirement for laboratory certification under ISO 17025. This practice describes the procedures by which such uncertainty estimates may be calculated.1.1 This practice describes a protocol to be utilized by measurement laboratories for estimating and reporting the uncertainty of a measurement result when the result is derived from a measurand that has been obtained by spectrophotometry.1.2 This practice is specifically limited to the reporting of uncertainty of color measurement results that are reported as color-differences in ΔE format, even though the measurement itself may be reported in other units such as percent reflectance or transmittance.1.3 The procedures defined here are not intended to be applicable to national standardizing laboratories or transfer laboratories.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is designed to permit users of sample survey data to judge the trustworthiness of results from such surveys. Practice E105 provides a statement of principles for guidance of ASTM technical committees and others in the preparation of a sampling plan for a specific material. Guide E1402 describes the principal types of sampling designs. Practice E122 aids in deciding on the required sample size.4.2 Section 5 gives extended definitions of the concepts basic to survey sampling and the user should verify that such concepts were indeed used and understood by those who conducted the survey. What was the frame? How large (exactly) was the quantity N? How was the parameter θ estimated and its standard error calculated? If replicate subsamples were not used, why not? Adequate answers should be given for all questions. There are many acceptable answers to the last question.4.3 If the sample design was relatively simple, such as simple random or stratified, then fully valid estimates of sampling variance are easily available. If a more complex design was used then methods such as discussed in Ref (1)3 or in Guide E1402 may be acceptable. Use of replicate subsamples is the most straightforward way to estimate sampling variances when the survey design is complex.4.4 Once the survey procedures that were used satisfy Section 5, see if any increase in sample size is needed. The calculations for making it objectively are described in Section 6.4.5 Refer to Section 7 to guide in the interpretation of the uncertainty in the reported value of the parameter estimate, θ^, that is, the value of its standard error, se(θ^). The quantity se(θ^) should be reviewed to verify that the risks it entails are commensurate with the size of the sample.4.6 When the audit subsample shows that there was reasonable conformity with prescribed procedures and when the known instances of departures from the survey plan can be shown to have no appreciable effect on the estimate, the value of θ^ is appropriate for use.AbstractThis practice presents rules for accepting or rejecting evidence based on a sample. Statistical evidence for this practice is in the form of an estimate of a proportion, an average, a total, or other numerical characteristic of a finite population or lot. This practice is an estimate of the result which would have been obtained by investigating the entire lot or population under the same rules and with the same care as was used for the sample. One purpose of this practice is to describe straightforward sample selection and data calculation procedures so that courts, commissions, etc. will be able to verify whether such procedures have been applied.1.1 This practice presents rules for accepting or rejecting evidence based on a sample. Statistical evidence for this practice is in the form of an estimate of a proportion, an average, a total, or other numerical characteristic of a finite population or lot. It is an estimate of the result which would have been obtained by investigating the entire lot or population under the same rules and with the same care as was used for the sample.1.2 One purpose of this practice is to describe straightforward sample selection and data calculation procedures so that courts, commissions, etc. will be able to verify whether such procedures have been applied. The methods may not give least uncertainty at least cost, they should however furnish a reasonable estimate with calculable uncertainty.1.3 This practice is primarily intended for one-of-a-kind studies. Repetitive surveys allow estimates of sampling uncertainties to be pooled; the emphasis of this practice is on estimation of sampling uncertainty from the sample itself. The parameter of interest for this practice is effectively a constant. Thus, the principal inference is a simple point estimate to be used as if it were the unknown constant, rather than, for example, a forecast or prediction interval or distribution devised to match a random quantity of interest.1.4 A system of units is not specified in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides one way for a laboratory to develop data-based Type A estimates of uncertainty as referred to in Section A22 in Form and Style for ASTM Standards.4.2 Laboratories accredited under ISO/IEC 17025 are required to present uncertainty estimates for their test results. This practice provides procedures that use test results to develop uncertainty estimates for an individual laboratory.4.3 Generally, these test results will be from a single sample of stable and homogeneous material known as a control or check sample.4.4 The true value of the characteristic(s) of the control sample being measured will ordinarily be unknown. However, this methodology may also be used if the control sample is a reference material, in which case the test method bias may also be estimated and incorporated into the uncertainty estimate. Many test methods do not have true reference materials available to provide traceable chains of uncertainty estimation.4.5 This practice also allows for ongoing monitoring of the laboratory uncertainty. As estimates of the level of uncertainty change, possibly as contributions to uncertainty are identified and minimized, revision to the laboratory uncertainty will be possible.AbstractThis practice describes techniques for a laboratory to estimate the uncertainty of a test result using data from test results on a control sample. This practice provides one method for a laboratory to estimate Measurement Uncertainty in accordance with Section A22.3 in Form and Style for ASTM Standards. This practice describes the use of control charts to evaluate the data obtained and presents a special type of control chart to monitor the estimate of uncertainty.This practice provides one way for a laboratory to develop data-based Type A estimates of uncertainty as referred to in Section A22 in Form and Style for ASTM Standards.1.1 This practice describes techniques for a laboratory to estimate the uncertainty of a test result using data from test results on a control sample. This practice provides one method for a laboratory to estimate Measurement Uncertainty in accordance with Section A22.3 in Form and Style for ASTM Standards.1.2 Uncertainty as defined by this practice applies to the capabilities of a single laboratory. Any estimate of uncertainty determined through the use of this practice applies only to the individual laboratory for which the data are presented.1.3 The laboratory uses a well defined and established test method in determining a series of test results. The uncertainty estimated using this practice only applies when the same test method is followed. The uncertainty only applies for the material types represented by the control samples, and multiple control samples may be needed, especially if the method has different precision for different sample types or response levels.1.4 The uncertainty estimate determined by this practice represents the intermediate precision of test results. This estimate seeks to quantify the total variation expected within a single laboratory using a single established test method while incorporating as many known sources of variation as possible.1.5 This practice does not establish error estimates (error budget) attributed to individual factors that could influence uncertainty.1.6 This practice describes the use of control charts to evaluate the data obtained and presents a special type of control chart to monitor the estimate of uncertainty.1.7 The system of units for this standard is not specified. Dimensional quantities in the standard are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The carbon isotope analysis is designed to be an adjunct to other information in determination of biobased content, specifically the manufacturer’s records. It is also a means of verifying the authenticity of a disputed lot of material which may be manufactured by different means, from different raw materials. FTIR or other chemical analysis means will identify the molecule as being ethanol, but not give indication of the source (that is, fossil carbon versus modern carbon). The carbon isotopes will give both indication of source and the presence of a mixture of sources.4.2 Representative sampling and handling methods are clearly a prerequisite to obtaining accurate results from the radiocarbon composition determination and any other quantitative analytical method.4.3 This guide provides for accurate and complete reporting of the sample collection, handling, chain of custody, sample preparation and treatment that allows any independent party to assess the validity of the reported biobased content of the material.1.1 This guide provides a framework for collecting and handling samples for determination of biobased content of materials by means of the carbon isotope method described in Test Methods D6866. Tests for sampling adequacy based on the standard statistical tools are provided. In addition, reporting of the results, including sampling techniques and handling procedures and chain-of-custody issues are discussed.1.2 This guide is concerned with collecting representative samples within a given material or a lot, not with lot-to-lot variations such as considered in quality control schemes.1.3 Biobased materials often represent sampling problems specific to a given material, such as heterogeneity, and so forth, which require employment of material-specific sampling methods. The use of specialized sampling methods already accepted and validated by industries that manufacture and/or use the biomaterial is encouraged. However, all sampling techniques, especially non-standard techniques developed for specific materials must be reported in sufficient detail to allow critical assessment of the techniques used.1.4 Carbon isotope analysis involves thermal processing in presence of oxidants. Compatibility of any given material with Test Methods D6866 must be assessed. Special attention must be given to materials with potential for explosion hazards, such as peroxides, nitrated compounds, azides, and so forth. Examples of peroxide-forming compounds are ethers, some ketones and a number of other compounds.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.Note 1—There is no known ISO equivalent to this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 Committee D-30, having conducted several interlaboratory tests of high modulus fibers, believes that many types of equipment and techniques will yield consistent data characterizing the tensile strength and modulus of high modulus fibers. The most important consideration is the complete description of the test methods. 1.2 This guide consists of the following three parts: 1.2.1 Part A- Description of Equipment and Techniques- This section describes the equipment and the techniques used for each series of tests. The section is complete and universal, and should be reviewed by the engineer or scientist responsible for the overall test program. 1.2.2 Part B- Description of Test Specimens- This section describes each type of fiber tested in a particular series, and can be prepared by the test technician. 1.2.3 Part C- Report of Tension Test Results- This section summarizes the results of each test series. The format simplifies the reporting of essential data. Additional information may be required to report the results of tests on specific fiber types. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Many thousands of water samples are collected each year and the chemical components are determined from natural groundwater sources. A single analysis can be interpreted easily regarding composition and geochemical type; however, it is difficult to comprehend all of the factors of similarities, interrelationships, and differences when large numbers of analyses are being compared. One of the methods of interpreting the implication of these chemical components in the water is by displaying a number of related water analyses graphically on a visually summarizing water analysis diagram. The water analysis diagrams described in this guide display the percentages of the individual cation and anion weights of the total cation and anion weights on graphs shaped as triangles, squares, diamonds, and rectangles. Note 3—The concentration of dissolved solids determined for each analysis is not evident by the plotted location. Scaled symbols, usually circles, can represent the amount of dissolved solids for each analysis plotted on the diagrams. Classification of the composition of natural groundwater is a major use of water analysis diagrams. Note 4—Palmer (20) developed a tabular system for the classification of natural water. Hill (1) classified water by composition using two trilinear and one diamond-shaped diagrams of his own design combined. Back (21) improved the classification techniques for determining the hydrochemical facies of the groundwater by a modification of the Piper diagram. The origin of the water or degree of mixing may be postulated by examination of the placement and relationship of the cations and anions from different water samples that are plotted on the diagrams. Numerous interpretive methods are possible from the examination of water analysis diagrams. For example, it is reasonable to hypothesize the path that the groundwater has traveled while in the hydrologic regime, the amount of mixing that has occurred with water from a different origin, and the effects of ambient conditions, such as air, temperature, rock, and man-induced contaminants, on the water. Note 5—It should be noted that for many hydrochemical research problems involving the interpretation of the origin, chemical reactions, and mixing of natural water, the water analysis diagram is only one segment of several analytical methods necessary to understand the condition.1.1 This guide covers the category of water analysis diagrams that use two-dimensional trilinear graphs as a technique for displaying the common chemical components from two or more complete analyses of natural groundwater (see Section 3) on a single diagram. This category includes not only trilinear-shaped diagrams but also the diamond- or parallelogram-, rectangular-, or square-shaped graphs that have trilinear subdivisions. 1.2 This guide is the first of several documents to inform professionals in the field of hydrology with the traditional graphical methods available to display groundwater chemistry. Note 1—Subsequent guides are planned that will describe the other categories of diagrams that have been developed to display groundwater chemical analyses. (1) A guide for diagrams based on data analytical calculations will include those categories of water analysis graphs in which one analysis is plotted on each diagram (for example, the pattern, bar, radial, and circle diagrams). (2) A guide for statistical diagrams will include those categories of water analysis graphs in which multiple analyses are analyzed statistically and the results plotted on the diagram (for example, the box, etc.). 1.3 Numerous methods have been developed to display the ions dissolved in water on trilinear diagrams. These diagrams are valuable as a means of interpreting the physical and chemical mechanisms controlling the composition of water. 1.4 The most commonly used trilinear methods were developed by Hill (1-3), Langelier and Ludwig (4), Piper (5, 6), and Durov (7-13). These techniques are proven systems for interpreting the origin of the ions in natural groundwater and for facilitating the comparison of results from a large number of analyses. Note 2—The use of trade names in this guide is for identification purposes only and does not constitute endorsement by ASTM. 1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Each year many thousands of water samples are collected and the chemical components are determined from natural and human-influenced groundwater sources.4.2 The objective interpretation of the origin, composition, and interrelationships of water can be simplified by displaying the distribution of the constituents and related parameters on areal maps (1,2).44.2.1 The origin of the chemical composition of the water may be postulated by the amount and the distribution of the constituents as shown on the maps.4.2.2 The chemical composition of the water can be scrutinized for distinct characteristics and anomalies by use of the maps.4.2.3 The interrelationships of the water chemistry from various sampling locations can be visualized on the maps.4.3 This guide presents various mapping methods for showing distribution of chemical constituents using areal and time-related trends; maximum, minimum, or mean values; and relationships between chemical and associated parameters.4.4 Exercise caution when interpreting the distribution of chemical constituents on two-dimensional (X and Y) maps as liquids of different densities tend to stratify in the third dimension (Z).NOTE 2: Water (or other liquid) with a relatively low concentration of dissolved solids (or of a low relative density) normally will float on top of water with high dissolved solids or a liquid of higher density (3-7). A naturally occurring example is an island surrounded and underlain by sea water where rain water falling on the island forms a fresh water lens above the underlying sea water. Where the presence of liquids of different densities are evident in a mapped area, cross sections of the aquifer assist in showing the vertical (Z) distribution of the chemical constituents or a pattern can be used on the map to delineate the extent of this water.NOTE 3: Immiscible liquid contaminants, such as petroleum products, with a relative density less than that of the water will float on top of the water. Liquids that are more dense than water will flow to the bottom of the aquifer. Miscible liquids, such as sea water, mix with the fresher water creating a zone of dispersion at the interface of the two liquids.4.5 Aquifers in fractured rock or karst areas may result in noncontinuum conditions for the chemical parameters in the water (Guide D5717). This guide assumes the aquifer usually consists of an equivalent porous media.4.6 This is not a guide for the selection of a map technique for a distinct purpose. That choice is program or project specific.NOTE 4: For many hydrochemical research problems involving the scientific interpretation of groundwater, the areal map is only one segment of several methods needed to interpret the data.1.1 This guide offers a series of options but does not specify a course of action. It should not be used as the sole criterion or basis of comparison and does not replace or relieve professional judgment.1.2 This guide covers methods that display, as mapped information, the chemical constituents of groundwater samples. Details required by the investigator to use fully the methods are found in the listed references.1.2.1 The use of maps to display water-quality data are a common technique to assist in the interpretation of the chemistry of water in aquifers, as the areally distributed values can be easily related to the physical locality by the investigator.1.2.2 The distribution in an aquifer of chemical constituents from two water sources or of liquids of different densities may be difficult to illustrate explicitly on a two-dimensional map because of stratification in the third dimension. Also, the addition of a vertical cross section may be required (see 4.4).1.3 Many graphic techniques have been developed by investigators to assist in summarizing and interpreting related data sets. This guide is the fourth document to inform the hydrologists and geochemists about traditional methods for displaying groundwater chemical data.1.3.1 The initial guide (Guide D5738) described the category of water-analysis diagrams that use pattern and pictorial methods as a basis for displaying each of the individual chemical components determined from the analysis of a single sample of natural groundwater.1.3.2 The second guide (Guide D5754) described the category of water-analysis diagrams that use two-dimensional trilinear graphs to display, on a single diagram, the common chemical components from two or more analyses of natural groundwater.1.3.3 The third guide (Guide D5877) presented methods that graphically display chemical analyses of multiple groundwater samples, discrete values, as well as those reduced to comprehensive summaries or parameters.1.4 Notations have been incorporated within the illustrations of this guide to assist the user in understanding how the maps are constructed. These notations would not be required on a map designed for inclusion in a project document.NOTE 1: Use of trade names in this guide is for identification purposes only and does not constitute endorsement by ASTM.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Fatigue test results may be significantly influenced by the properties and history of the parent material, the operations performed during the preparation of the fatigue specimens, and the testing machine and test procedures used during the generation of the data. The presentation of fatigue test results should include citation of basic information on the material, specimens, and testing to increase the utility of the results and to reduce to a minimum the possibility of misinterpretation or improper application of those results.1.1 This practice covers the desirable and minimum information to be communicated between the originator and the user of data derived from constant-force amplitude axial, bending, or torsion fatigue tests of metallic materials tested in air and at room temperature.NOTE 1: Practice E466, although not directly referenced in the text, is considered important enough to be listed in this standard.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Use of HCT Data and Testing Objectives—The laboratory weathering test method (D5744) generates data that can be used to:4.1.1 Determine whether a solid material will produce an acidic, alkaline, or neutral effluent;4.1.2 Identify solutes in the effluent that represent dissolved weathering products formed during a specified period of time, and inform the user of their potential to produce environmental impacts at a mining or metallurgical processing site under proposed operating conditions;4.1.3 Determine the mass of solute release; and4.1.4 Determine the rate at which solutes are released (from the solids into the effluent) under the closely controlled conditions of the test for comparison to other materials.4.1.5 These approaches are based on the existence of detailed mineralogical work and static tests that provide a basis for interpreting HCT results.4.1.6 Detailed mineralogical work might lead a reviewer to suspect either acid neutralization potential (ANP) or acid generation potential (AGP) minerals have questionable availability, which would be a significant factor in interpreting HCT results and decisions concerning test duration.4.2 Interpretation of data generated by the laboratory weathering procedure can be used to address the following objectives:4.2.1 Determine the variation of drainage quality as a function of compositional variations (for example, iron sulfide and calcium plus magnesium carbonate contents) within individual mine rock lithologies;4.2.2 Determine the amount of acid that can be neutralized by the sample while maintaining a drainage pH of ≥6.0 under the conditions of the test;4.2.3 Estimate mine rock weathering rates to aid in predicting the environmental behavior of mine rock; and4.2.4 Determine mine rock weathering rates to aid in experimental design of site-specific kinetic tests.4.3 Interpretation Approaches—Guides A, B, and C are intended as examples of what to consider in developing an approach for determining how reasonable objectives for humidity cells might be structured, and some possible criteria for cooperative management of HCTs involving stakeholders.4.3.1 It is also possible to use an approach to establish a decision point, rather than an end point, to the humidity cell test during the planning stage. Guides A, B, and C are examples of techniques and associated criteria comprising some approaches to help interpret data generated by humidity cell tests. Decision points can be established during the planning stage to allow stakeholders an opportunity to review the results and decide if additional weathering cycles are needed to meet the objectives of the testing.4.3.2 Continuation of the HCT beyond the decision point may or may not provide important information regarding the acceleration or deceleration of oxidation and metal leaching in the material being tested.4.3.3 More detailed leachate information from a longer HCT may be critical information for designing waste management or water treatment facilities as accounted for in an AMP, but an agreed-upon endpoint of test objectives would allow for a decision that advances mine planning and permitting.4.3.4 The laboratory weathering procedure provides conditions conducive to oxidation of solid material constituents and enhances the transport of weathering reaction products contained in the resulting weekly effluent. This is accomplished by controlling the exposure of the solid material sample to such environmental parameters as reaction environment temperature and application rate of water and oxygen.4.3.5 Because efficient removal of reaction products is vital to track mineral dissolution rates during the procedure, laboratory leach volumes are large per unit mass of rock to promote the rinsing of weathering reaction products from the mine rock sample. Interpretation of laboratory kinetic tests by comparison with field tests has shown that more reaction products from mineral dissolution are consistently released per unit weight and unit time in laboratory weathering tests (2). For example, sulfate release rates observed in laboratory tests of metal mine rock have been reported to be three to eight times those for small-scale field test piles of Duluth complex rock (3), and from two to 20 times those for small-scale field test piles of Archean greenstone rock (4). A greater increase is anticipated when laboratory rates are compared with field rates measured from operational waste rock piles.4.4 In some cases, it may be useful to establish criteria for a decision to end the weathering cycles for a particular cell based on HCT results but still continue to maintain the HCT test weathering cycles for a longer duration.4.4.1 In other cases, it might be useful to have duplicate HCTs and use one as a basis for a decision point and subsequent destructive evaluation of reaction products.4.4.1.1 The duplicate cell could be maintained to confirm the basis for the decision and be used to update the AMP and financial guarantee, if necessary.4.4.2 This approach supports a decision concerning mine waste management and planning, including an AMP.4.4.3 This approach does not necessarily resolve the need for accurate prediction of long-term metal leaching and drainage quality, but is recommended as a tool for making decisions on how to conduct testing with the objective of determining how ore and waste will be handled and monitored, and the potential level of risk involved in related decisions for specific sites and materials.4.5 Continuing HCT weathering cycles for an extended period of time may also provide a higher level of certainty.4.6 Depending on the site-specific resources at risk and behavior of waste materials, an extended HCT weathering cycle duration may be an important consideration for stakeholder groups to use in evaluating HCTs.4.7 As a mine typically involves very large quantities of waste rock, which will be leached by at least some amount of incident precipitation for extended times, ongoing monitoring of waste facility performance, including any produced effluent or leachate, is almost always required as a condition of permit approval.4.8 Performance monitoring of permitted facilities can be a critical element in the development of a humidity cell performance database, as well as support for the evolving HCT weathering cycle duration criteria and approach proposed here.4.9 A humidity cell performance database could be developed in a standard format to allow comparison of laboratory weathering results with drainage from field waste facility performance, based on publicly available information.4.9.1 A model approach with possible objectives and criteria are presented below as examples to help interpret HCT results.4.10 Variations in specific approach requirements and criteria (% sulfur, sulfide sulfur, carbonate, pH, sulfate release, etc.) will depend on the site-specific objectives, deposit mineralogy, and characterization, including various static test results and management plans agreed upon by stakeholders.4.10.1 Regardless of the site-specific stakeholder objectives, instability in metal release rates should strongly suggest continuation of weathering cycle testing.4.10.2 Regardless of the decision process followed, the ultimate responsibility for the permitting decision lies with the permitting agency(s), and the ultimate environmental liability and operating responsibility lies with the mining company.4.11 These approaches are suggested as a model to be used by the involved stakeholders for their determination of when it is appropriate to schedule and extend HCT weathering cycles and how to treat the residues.4.12 The specific parameters (sulfur, CaCO3, SO4–2 release rates, metal release rates, etc.) involved will likely vary depending on site-specific factors, which could include the lithology, petrology and mineralogy, climate, regulatory approach, environmental risk for the units, and ore deposit type being evaluated.4.13 The criteria selected for management of the duration of HCTs should rely on a combination of parameters, as any criteria based on a single parameter value like % sulfur will not be reliable (5).4.14 The values in the approaches presented are chosen only as examples, and actual cell management criteria are intended to be reviewed and agreed upon by the stakeholders, on a site-specific basis.4.15 The specific parameters and values selected might vary considerably depending on site-specific factors, which might include environmental risk. It is up to the stakeholders to modify and use this approach to develop objectives which meet the specific requirements at their site and to use their modifications to reach a consensus on test duration.4.16 The following decision criteria (sulfide sulfur quantitative limit, sulfate release rates, pH, and steady state duration) must be developed on a site/project-specific basis based on considerations including site-specific lithology, mineralogy, trace metal characteristics, and potential environmental risks. The values given in the following guides are merely example criteria; it is up to the stakeholders to manage their own criteria.1.1 This kinetic test guide covers interpretation and cooperative management of a standard laboratory weathering procedure, Test Method D5744. The guide suggests strategies for analysis and interpretation of data produced by Test Method D5744 on mining waste rock, metallurgical processing wastes, and ores.1.1.1 Cooperative management of the testing involves agreement of stakeholders in defining the objectives of the testing, analytical requirements, planning the initial estimate of duration of the testing, and discussion of the results at decision points to determine if the testing period needs to be extended and the disposition of the residues.1.2 The humidity cell test (HCT) enhances reaction product transport in the aqueous leach of a solid material sample of specified mass. Standard conditions allow comparison of the relative reactivity of materials during interpretation of results.1.3 The HCT measures rates of weathering product mass release. Soluble weathering products are mobilized by a fixed-volume aqueous leach that is performed and collected weekly. Leachate samples are analyzed for pH, alkalinity/acidity, specific conductance, sulfates, and other selected analytes which may be regulated in the environmental drainage at a particular mining or metallurgical processing site.1.4 This guide covers the interpretation of standard humidity cell tests conducted to obtain results for the following objectives:Guide and Objective Sections     A – Confirmation of Static Testing Results 5 – 6     B – Evaluation of Reactivity and Leachate Quality            for Segregating Mine, Processing Waste, or            Ore 7 – 8     C – Evaluation of Quality of Neutralization            Potential Available to React with Produced            Acid 9 – 10   1.5 This guide is intended to facilitate use of Test Method D5744 to meet kinetic testing regulatory requirements for metallurgical processing products, mining waste rock, and ores sized to pass a 6.3-mm (0.25-in.) Tyler screen.1.5.1 Interpretation of standard humidity cell test results has been found to be useful for segregation of ore and waste and design of proper stockpiling and disposal facilities.1.6 Interlaboratory testing of the standard D5744 humidity cell has been confined to mine waste rock. Application of this guide to metallurgical processing waste (for example, mill process tailings) is not supported by interlaboratory test data. Method B of Test Method D5744, however, has been found useful for testing of metallurgical products, and this guide is also useful for interpretation of those results (1).21.7 This guide is intended to describe various procedures for interpreting the results from standard laboratory weathering of solid materials in accordance with Test Method D5744. It does not describe all types of sampling and analytical requirements that may be associated with its application, nor all procedures for interpretation of results.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this guide.1.8.1 Exception—The values given in parentheses are for information only.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide can be used to evaluate the performance of a laboratory or group of laboratories participating in a proficiency test (PT) program involving petroleum and petroleum products.5.2 Data accrued, using the techniques included in this guide, provide the ability to monitor analytical measurement system precision and bias. These data are useful for updating standard test methods, as well as for indicating areas of potential measurement system improvement for action by the laboratory. This guide serves both the individual participating laboratory and the responsible standards development group as follows:5.2.1 Tools and Approaches for Participating Laboratories.Administrative ReviewsFlagged Data and InvestigationsData Normality ChecksQQ PlotsHistogramsBias (Deviation from Mean)Run-SumZ-Scores, Z′-Scores TrendsPrecision Performance—TPIIND, F-testComparison of PTP and Individual Laboratory Site Precision5.2.2 Tools and Approaches for Responsible Standards Development Groups.TPI and precision trendsBias and precision comparisons via box & whisker plotsNormality evaluationsRelative standard deviationsUncontrolled variables5.3 Reference is made in this guide to the ASTM International Proficiency Test Program on Petroleum Products, Liquid Fuels, and Lubricants, version PTP 2.0 implemented in 2016–2017. Program reports containing similarly displayed results and statistical treatments may be available in other PT programs. Appendix X2 summarizes the statistical tools referenced in this guide and Appendix X3 is a collection of examples covering QQ plots, histograms, and Run-Sum described in this guide.1.1 This guide covers the evaluation and interpretation of proficiency test program (PTP) results. For proficiency test program participants, this guide describes procedures for assessing participants’ results relative to the collective PT program results and potentially improving the laboratory’s testing performance based on the assessment of findings and insights. For the committees responsible for the test methods included in PT programs, this guide describes procedures for assessing industry’s ability to perform test methods and for potentially identifying opportunities for improvements.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The ability to correlate results of analyzers to sieve sets enables the use of non-sieve methods to be employed that give comparable results to each other.5.2 The use of analyzers for proppant measurement has the benefit of providing particle shape characteristics which are important in the performance of these materials. Shape analysis is currently done by operator’s determination based on a visual observation of a small number of particles per API 19C. Available information from imaging analysis of many particles can be used to assess the proppant shape characteristics as opposed to just a small number.1.1 This practice describes procedural steps to create a correlation that can be used to compare results of proppant size distributions between dynamic imaging analyzers (analyzers) and prescribed sieve sets.1.2 The proppant size and distribution specifications that are included in this practice are listed in API Standard 19C (API 19C) and shown in Table 1, however as industry evolves additional specifications may come into use and this practice can be used with those as well.1.3 This practice may not be applicable to all proppant types and designations. The acceptability of the correlations determined are judged by the operator.1.4 The values stated in SI units are to be regarded as the standard, except sieve designations are typically identified using the ‘alternative’ system in accordance with Practice E11, such as 3 in. and No. 200 instead of the ‘standard’ system of 75 mm and 75 µm, respectively.1.5 Observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.5.1 The procedures used to specify how data are collected/recorded and calculated in Practice D6026 are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
48 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页